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STEADY AND UNSTEADY THREE-DIMENSIONAL TRANSONIC FLOW

COMPUTATIONS BY INTEGRAL EQUATION METHOD

Hong Hu
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This is the final technical report of the research performed under the grant: NAG-
1-1170, from the National Aeronautics and Space Administration. The report consists of
three parts. The first part presents the work on unsteady flows around a zero-thickness

wing. The second part presents the work on steady flows around non-zero thickness wings.
The third part presents the massively parallel processing implementation and performance
analysis of integral equation computations. In the end of the report, publications resulted
from this grant are listed and attached.



PART I: UNSTEADY FLOWS

SUMMARY

This part presents the development of an unsteady integral equation (or called field-
panel, field-boundary element) scheme for solving the full-potential equation for transonic
unsteady zero-thickness wing flows. The unsteady full-potential equation is written in a
moving frame of reference, in the form of the Poisson's equation. Compressibility and
unsteadiness are treated as non-homogeneity. The integral equation solution in terms
of velocity field is obtained by the Green's theorem. The solution consists of a wing
surface integral term of vorticity distribution, a wake surface integral term of free-vortex
sheet and a volume integral term of compressibility and unsteadiness over a small limited
domain around the wing. Numerical solutions are obtained by a time-marching, iterative
procedure. Time-derivative term is calculated by a second-order backward finite-difference
scheme. To be consistent with the mixed-nature of flows, the Murman-Cole type-difference
scheme is used to compute the derivatives of the density. The present scheme is applied to
flows around a zero-thickness rectangular wing at transonic speed undergoing acceleration
motion and transient pitching motion, respectively. The time history of wing surface
pressure distributions is presented.



I-I. INTRODUCTION

Starting in 1970,a great deal of progresshasbeenmade in solving transonic flows by
using the finite-difference method (FDM) and finite-volume method (FVM). Although
the Navier-Stokes equation formulation for the transonic flow computations has been
understood as the best model and the FDM and FVM are successfulin dealing with
transonic flows, the computation of the unsteady Navier-Stokesequations over complex
three-dimensionalconfigurations is expensive,particularly for time-accurate unsteady flow
computations. There are alsomajor technicaldifficulties in FDM and FVM for generating
suitable grids for complex three-dimensionalaerodynamicconfigurations.

The experiencehasshown that accuratesolutions can beenobtained for many tran-
sonic flows using the inviscid modeling of the full-potential equation. For transonic flows
without strong shocksand massiveseparations,the full-potential equation is an adequate
approximation to the Navier-Stokesequations. The integral equation method (IEM) for
the potential equation is an alternative to the FDM and FVM. Moreover, the IEM has
severaladvantagesover the FDM and FVM. The IEM involves evaluation of integrals,
which is more accurate and simpler than the FDM and FVM, and hence a coarse grid
(field-panels) can beenusedin IEM. The IEM automatically satisfiesthe far-field bound-
ary conditions and therefore only a small limited computational domain is needed. The
IEM doesnot suffer from the artificial viscosityeffectsascomparedto FDM and FVM for
shockcapturing in transonic flow computations. The generationof the three-dimensional
grid for complex configuration is not difficult in the IEM, since the mapping from physical
plane to computational plane is not required.

Because of these advantages associated with the IEM, it is highly desirable to fully de-
velop the IEM to treat transonic flows. Integral equation methods for transonic flows have
been developed by several investigators 1-14 during the past few years for steady airfoil,
wing and aircraft configurations and unsteady airfoils. The capability, accuracy and effi-
ciency of the integral equation method for steady transonic flows have been investigated.
The possibility of treating unsteady transonic flows has been investigated for an airfoil

undergoing pitching oscillation la. The solutions show that the unsteady effects and the

motion of the shock have been predicted accurately and efficiently by the method 13. This
part presents the unsteady three-dimensional integral equation scheme, which is the exten-

sion of the unsteady two-dimensional scheme 13, coupling with the steady three-dimensional

scheme for zero- thickness wing 9. Two numerical examples are presented to demonstrate
the capability of the unsteady wing flow computations using the integral equation method.

I-2. FORMULATION

For a general unsteady motion of a body, the governing equations axe simple to solve

if a moving (body-fixed) frame of reference formulation is used. This formulation does
not require the grid-motion calculation since the grid is rigidly fixed in the frame. In
addition to the space-fixed frame of reference OXYZ, a moving frame of reference oxyz
is introduced as shown in Figure 1. The moving frame of reference oxyz is translating

at a velocity of Vo(t) and rotating around a pivot point, Vp --" (xp, yp, zp), at an angular

velocity of _(t). The relation for the absolute velocity (V), relative velocity (Dr) and

transformation velocity (Do + ve = vo + _ x (_'- _'p)) is given by

17 = f, + fo + 5 x (_- r",) (1)
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where _' is the position vector measured in the moving frame of reference.

I-2.1 Governing Equations

The non-dimensional unsteady full-potential equation in the moving frame of reference
was derived as follows14:

v2¢ = a (2)

with

and

G = G1 + G2 (3)

al = Vp. (4)
P

G2 -- I O' p (5)
pOt

(6)

where the characteristic parameters of the wing surface panel length, the density and

the speed of sound at infinity have been used; • is the absolute velocity potential (V =

V¢ = V'_), G1 the compressibility, G2 the unsteadiness, p the density, n the gas specific
heat ratio, and t the time; and the prime (I) refers to the derivative with respect to the
moving frame of reference. The associated boundary conditions are described in the next
sub-section.

1-2.2 Boundary Conditions

The boundary conditions are surface no-penetration condition, Kutta condition, in-
finity condition, wake kinematic and dynamic conditions. They are described as follows:

1),. • _g = 0 on g(v-') = 0 (7)

acplsp =0 (8)

V¢--_0 away from g(r-')=0 and w(_',t)=0 (9)

1 O'w
+Vr'_w=O on w(_,t)=0 (10)

IW, I at

aG=0 on w(Z,t)=O (ll)

where fig is the unit normal vector of the wing surface, g(_ = 0; Cp is the surface pressure
coefficient; the subscript sp refers to the edges of separation, and in the present scheme
the only separation from the wing trailing edge is considered; and w(_', t) = 0 is the wake
surface.

I-2.3 IE Solution
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By using the Green's theorem, the integral equation solution of Eq.
the relative velocity field is given by

C(x, _,z,t) = -_?o(_)- _(t) × (_- %)

1 / f_ %(_,,7,_,t)× id_(_,,1,_)+ _ d3

1 //,_ 7%(_,_,_,t)x dd (12)+ _ d3 _(_,_,¢,t)
1

41rf / /v G(_"l'¢'t) ¢dd_dOdfd2

where "7 is the surface vorticity distribution; the subscripts g and w refer to the wing and

wake surfaces, respectively; ds is the infinitesimal surface area; the vector dis given by

d= (x - _)_'+ (y - r/)f + (z - ¢')f_; and _'a is defined by _d = d/l_.

(2) in terms of

In Eq. (12), the first integral term is the contribution of the wing surface vorticity;
the second integral term is the contribution of the wake vorticity; and the third integral
term is the contribution of the full compressibility and the unsteadiness. It should be
noticed that the infinity condition, Eq. (9), is automatically satisfied by the integral
equation solution. It should be also noticed that the integrand of the volume integral
term, the third integral term in Eq. (12), decreases rapidly with increasing distance, d, not

only because of the factor of 1/d 2 but also G(_, r/, ¢, t) diminishes rapidly with increasing
distance. Consequently, for computational purposes, the volume integral term needs to be
addressed only within the immediate vicinity of the body. This is the beauty of the IE
methods.

I-3. COMPUTATIONAL SCHEME

I-3.1 Discretisation

In terms of discretisation, the wing and its wake are represented by triangular vortex
panels. A uniform rectangular parallelopiped type of volume elements are used throughout
the flow field. The discretized integral equation solution becomes

C(_,y,z,t)

= -_o(t)- _(t) × (_'- e,)
LG NG -.

J/ 7_"' (_' r/' _' t) x d+-4_ i_1_.== ,., d 3 ds(_,rl,_)

. LWNW .

LV MVNV

: fli i.47r EEEG,,,,k -_edd_d,d_
i=1 j=l k=l ,j,k

%,,,(_,,7,¢,t) x i
d' d_(_,,7,¢',t)

(13)



where the indices, i, j and k refer to the surface panels and field elements; LG x NG is the
total number of wing surface panels; LW x NW is the total number of wake surface panels;
and LV x MV x NV is the total number of field elements. A constant G-distribution is

used over small field element, while a linear -_-distribution is used over small surface panel.

I-3.2 Time-Marching, Iterative Scheme

Due to the nature of the nonlinearity of the flow, the solutions are obtained through
a time-marching, iterative procedure, where the compressibility, G1, unsteadiness, G2,
and the wake shape and its strength are updated within each iteration. The solution
procedure follows the successful form of the unsteady two-dimensional scheme 13 and the

steady three-dimension scheme 9 , hence only a brief description is given:

Step 1 - at time step (k = 0) :

This step corresponds to the steady flow computation. At this step, G_ °) and (0'(I)/0t) (°)

are set to be zero. Equations (3), (4), (6) and (13) with the boundary conditions are solved
iteratively until the solution converges. Here, two loops are used. The inner loop is used

to calculate and check the convergence of the non-linear term, G (°). The outer loop is

used to update and check the convergence of the wake shape and wing surface pressure
distribution.

Step 2 - at time step (k = n) :
This step is unsteady time marching step. At tb.is step, the wing translation and angular

velocities are calculated by the given functions, Vo = rVo(t) and _ = _(t), respectively.

The orientation of the wing changes due to the angular velocity. Two numerical examples
are considered. In the first numerical exaanple, the wing is given an acceleration motion.

Translation Mach number, Mo(t) = Vo(t)/aoo, is given by

Mo(t)= + Mot (14)

where M_ is the initial value of Mo(t) and A)/o is the rate of change of Mo(t). In the second
numerical example, the wing is given an forced transient pitching motion. Angle of attack,
a(t), is given by

= (15)

where ai is the initial value of a(t) and & is the z-component of _ (_ --- 0_" h- Of + &/_).

The unsteadiness, G_ n), is calculated numerically by a second-order accurate backward

finite-difference scheme, which is given by

v n) = _(1 (n)
P

1 clp (n-2) "4-c2p (n-l) 4" cap (n)

p(n) C4

(16)

where c_ = 1; c2 = -[(At ("-D + At(n))/At(n)]2; ca = c22 -- 1; and e 4 ---- --(At (n-z) -1L

At (n)) --c2At(n). The time derivative term of the potential, ((9'(I)/0t) ('0, can been numer-

ically calculated by if(n) and (I)(n-l), and hence (I,(n) and if(n-l) must be calculated by
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integration of the velocity field numerically. In order to avoid numerical error when doing
this numerical integration, Eq. (6) is usedto compute(0'¢/0t) (n) distribution. Thus, Eq.
(6) takes the form

With (7(2n) obtained from Eq. (16) and (0'ff/0t) (n) obtained from Eq. (17), Step 1 is
repeated until the solution converges.

Step 3 - at time step (k = n + 1) :
Step 2 is repeated for time step (n + 1).

I-4. NUMERICAL EXAMPLES

The present scheme has been applied to a zero-thickness, rectangular wing with aspect
ratio of 2. The haft-span of the wing and the wake is divided into 10 x 6 and 10 x 10
quadrilateral panels, respectively. Each quadrilateral panel consists of 2 triangular panels.
The one-half of the computational domain is divided into 23 x 9 x 9 field volume elements
in x, y and z directions, respectively. Two numerical examples are presented as mentioned
before. The first one is the acceleration motion and the second one is the pitching motion.

Acceleration Motion

In this numerical example, the wing is given an acceleration motion at an angle of
attack of 5 degrees. The translation Mach number is given by

Mo(t)=O.7+O.lt (18)

where t is given by nAt; n is the time step index and At is the time step size, which is nu-
merically chosen as 0.1 for this case. The time history of the surface pressure distributions
is presented in Figures 2a through 2c at z = 1.11, z = 4.44 and z = 7.78, respectively.
The surface pressure distributions at Mo(t) = 0.80 over different wing across-sections are
shown in Figure 2d. It can be seen that the shock is located in the region between x = 0.67
and x = 1.67. The chord length is 10 units with the leading edge at x=0. Due to the lack

of experimental data and other computational results, an integral equation solution 9 for
steady flow is provided in Figure 2a to serve as an reference solution.

Transonic Pitching Motion

In this numerical example, the wing is given an forced transient pitching motion at a
transonic translation Mach number of 0.7. In this case, the contribution of the rotation

of the moving frame of reference has been included, which is represented by _ x (_'- r_).
To simplify the problem, only a pitching motion in xy-plane is considered. The angle of
attack is given by

a(t) = 5 ° + 0.5°t (19)

where At is numerically chosen as 1 in this case. The time history of the surface pressure
distributions is presented in Figures 3a through 3c at z = 1.11, z = 4.44 and z = 7.78,



respectively. The surface pressure distributions at a(t) = 10 ° over different wing across-
sections are shown in Figure 3d. The results presented here are self-explanatory, which
show that the present scheme can capture unsteady effects, although the accuracy of the
solution is to be determined.

I-5. CONCLUDING REMARKS

An unsteady integral equation scheme based on the full-potential equation formulation
for transonic flows is developed. The scheme is capable of handling general unsteady motion
in three dimensions, although only an acceleration motion and a pitching motion in xy-
plane are implemented and tested. The computational results show that the scheme is
capable of capturing shock and unsteady effects. The scheme is very stable, and the solution
converges within 1-5 iterations per time step. The number of iterations for convergence
decreases when t increases. The large time steps (At = 1.0, or 0.1) used in the present
computations make this scheme very efficient for unsteady flow solutions. It is necessary to
emphasize that the main aim here has been a demonstration of unsteady three-dimensional
transonic flow computations using integral equation method, and hence the accuracy of
the solution is less of a priority at this time.
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PART II: STEADY FLOWS WITH SHOCK-FITTING

SUMMARY

This part presents the development of an integral equation shock-fitting field-panel
method for three-diemnsion (3D) transonic flows. In this method, the full-potential equa-
tion, written in the form of the Poisson's equation, is solved by integral equation field-panel
method. The solution consists of a wing surface source panel integral term, a field-volume
integral term of compressibility over a small limited domain, and a shock panel integral
term. Due to the non-linearity of flows, solutions are obtained through an iterative proce-
dure. Instead of using a field-panel refinement procedure, a shock-fitting technique is used
to fit the shock. Finally, numerical examples are provided to demonstrate the accuracy of
the method. The major differenc of this part from the previous part is that this part deals
with non-zero thickness wing flows and the accuracy of the solution is discussed.
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II-1. INTRODUCTION

As mentionedin the previouspart, integral equation methodsfor transonic flows have
been developedby severalinvestigators1-14 during the past few years for steady airfoils,
steadywing and aircraft configurations and unsteady airfoils. Thesemethods solveeither
full-potential or transonic small disturbanceequationsusingboth surfaceand field panels.
The shock capturing technique was applied in thesemethods. The method of Ref. 11
solvesthe full-potential equation for two-dimensional transonic flows, where both shock-
capturing and shock-fitting techniquesareapplied. The capability of capturing shockswith
shock-capturing technique and improvementof the shockwith shock-fitting technique was
presentedin the Ref. 11. The method is efficient and engineeringaccurate. In this part
a method for computing steady 3-D flows is presentedalong with numerical examples
to demonstrate the capability, accuracyand the potential of the present IE schemefor
subsonic and transonic flow computations. The method is the extension of the steady
2D method of Ref. 11 to three-dimensionalflows. In order to use a coarse grid, which
is particularly important in 3D calculations, the shock-fitting technique is applied to the
present transonic flow calculations.

II-2. FIELD-PANEL FORMULATION

II-2.1 Governing Full-Potential Equation

The non-dimensional steady full-potential equation is given by:

V20 = G1 (20)

with

= - v-Z•ff (21)
P

and

p = [1 + --V-(1 - u _ - v: - w2)] _ (22)

where the characteristic parameters, poo, aoo and c have been used; a is the speed of the
sound, p the density, and c the wing root-chord length; and 4> is the velocity potential

(V(I) = 17 = (u, v, w)), G1 the compressibility, and t¢ the gas specific heat ratio.

Equation (20) is not in the conservative form but in the form of the Poisson's equa-
tion. By writting the full-potential equation in the Poisson's form, the nonlinearity of
the transonic flows can be treated as non-homogeneity and in terms of the IE solution,
this non-linearity is represented by field volume integral term. And hence the classical
surface- panel method can be extended into field-panel method for non-linaer flows. The

experience 1-14 has shown that such non-conservative formulation has produce accurate

solutions as long as the shock is not very strong.

II-2.2 Boundary Conditions

The general boundary conditions are surface no-penetration condition, Kutta condi-
tion, infinity condition, and wake kinematic and dynamic conditions as mentioned in Part

10



I. For the present non-lifting flows, the only surfaceno-penetration condition and infinity
condition are neededand they aregiven by:

and

_7._g = 0 on g(r-') ----0 (23)

V(I) _ 0 away from g(r-') = 0 and w(r-') = 0 (24)

where fig is the unit normal vector of the wing surface, g(r-') = 0.

II-2.3 IE Solution

By using the Green's theorem, the integral equation solution of Eq. (20) in terms of
the velocity field is given by

17(x, z) =

4r d2 Qds(_, r/, ¢)

1

+-_ / / /v G(_'O") _dd_drld'd2

1

+ _-_ / /s qs(_'_'

(25)

where 17oo is the free-stream velocity; q is the surface source distribution; the subscript,

S, refers to the shock surface; ds is the infinitesimal surface area; the vector dis given by

d= (x - _)_" + (y - r/)f + (z - _)k; and gd is defined by ga = d/Id']. It can be seen that the
infinity condition, Eq. (24), is automatically satisfied by the integral equation solution,
since the integrals become zero when d is large enough.

II-2.4 Field-Panel Discretisation

The formulation presented here can be easily extended to general lifting flows by

including surface and wake vortex-panel integral terms, although the present computations
are only made to symmetric non-lifting flows. In this non-lifting computational model, the

wing surface is represented by a number of uniform rectangular source panels. A uniform
rectangular parallelopiped type of field-volume panels are also used throughout the flow
field. Constant surface and volume source (q and G) distributions are assumed over wing
/ shock surface panels and field volume panels. The discretized integral equation solution

11



in terms of surface and field-volume panels then becomes

LG NG

1EEqg,,./jfg 1_.4n i--1 k=l ¢,k d'iedds( (' 7, ¢)

i=1 j=l k=l , ,

MS NS

j=lk=l j,k

(26)

where the indices, i, j and k refer to the surface and field panels; LG x NG is the total
number of wing surface panels; LV x MV x NV is the total number of field panels; and
MS x NS is the total number of shock surface panels. A sketch of the computational
model is given in Figure 4, while the detailed wing surface panelling is given in Figure 5
where the exact number of wing surface panels is shown for a typical case.

II-3. COMPUTATIONAL SCHEME

Iio3.1 Iterative Scheme

Due to the nature of the non-linearity of transonic flows, solutions are obtained
through an iterative procedure, where the wing surface source strength and the compress-
ibility over selected volume elements are updated through each iteration. The solution
procedure follows the successful form of Ref. 11 of two-dimensional computations. Here
only the treatment of shocks for transonic flow is described.

II-3.2 Shock-Fitting Technique

It should be mentioned that mathematically the second (volume) integral term of
Eq. (26) includes all compressibility effects including shock discontinuity. Since a relative
coarse grid is used in the present IE computational domain where only 10 field panels are
used over the wing chord, the contribution of the shock discontinuity is extracted from this
volume integral term and it is represented explicitly by the third integral term of Eq. (26).
It is very important to use coarse grid in 3D calculations, since the integral calculations
over 3D field panels are very expensive. The strength of shock panels, qs,is equal to the
difference of normal velocity across the shock. This can be shown by integrating Eq. (20)
over an infinitesimal volume around an infinitesimal area of the shock surface and applying
the divergence theorem, one gets

a(v ) = v2. - v1. = G1,

where e is the infinitesimal thickness normal to the shock surface.

and using Rankine-Hugoniot relation, one finally obtains

(27)

By letting Gle = qs

(to- 1)M12n + 2 _ 1]Vln
qs = [ "(_-+ 1)M2 "

(28)
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where the subscripts 1 and 2 refer to the conditions ahead and behind of the shock,
respectively; and the subscript n refers to the normal component to the shock. The purpose
to use Rankine-Hugoniot relation is to introduce the effect of entropy change across the
shock sinec the full- potential formulation uses isentropic flow assumption which is not
true in the shock region.

The constantly distributed, piece-wise continuous (in flow direction) oblique shock
panels are used. The slope of shock panels is determined by the so called 0 - 3 - M
relation as given by

•, ._r M21sin2_- 1

tanO = zco_P[ M_--_ _cos2-_)+ 2 ] (29)

where 0 is the flow-deflection angle, and fl is the shock angle.

In the present calculation, the shock panel term, the last term of Eq. (26), becomes
active only after the sonic line (and hence the shock location) is fixed. In other words, the
shock-capturing technique is first used to locate the shock, where the Murman-Cole type-
difference scheme is used in consistent with the mixed-nature of transonic flows. The use of

the Murman-Cole scheme is equivelent to the introducing of the artificial dissipation. The
use of this artificial dissapation scheme within a shock-fitting scheme seems contradictory
since some of their effects will cancel each other. But if we consider the shock-fitting as
the way to give a correct inviscid shock and the Murman-Cole scheme as the way to give
the artificial viscous effect, then the use of the Murman-Cole scheme with shock-fitting
scheme will give a correct viscous shock, this is what it should be.

II-4. NUMERICAL EXAMPLES

The presesnt scheme is applied to rectangular wings of symmetric sections with differ-
ent aspect ratios (AR) at different free-stream Mach numbers. The half-span of the wing
surface (including upper and lower surfaces) is divided into (20to24) x (6to12) quadrilat-
eral panels depending on wing geometry and free-stream conditions. The one-half of the
computational domain is divided into 20 x 16 x (9to18) field volume elements in chord,
normal and span directions, respectively. The size of the computational domain is from
2c x 1.5c x 2.25c to 2c x 1.5c x 3c for different AR values in the chord, normal and span
directions, respectively. It should be noted that the both surface- and field-panel sizes in
chord (flow) direction are as large as 10% of chord length. Only symmetric flows with zero
angle of attack (non-lifting flows) are considered, and attached flow assumption is also
made.

The first numerical example is made to the flow around a wing with a 5% thick
circular arc section of AR = 3 at free-stream Mach number of 0.7, a shock-free subsonic

flow, where the non-linearity effect is small. Figure 6a is the calculated surface local Mach
contoures which shows that the flow is purly subsonic. The calculated surface pressure
coefficients are presented in Figure 6b in terms of contours and Figure 6c in terms of line
plot, along with the computational results obtained by the non-linear LTRAN3 TSD FD

code 1_ and by the linear SOUSSA IE code ss at three span stations located at 0%, 50%
and 90% of semi-span. As the figure shows, the presently calculated pressure distributions
are in close agreement with the non-linear LTRAN3 results over the entire wing surface
and agreement with the linear IE SOUSSA results except the discrepancy over leading and
trailing edges. The convergence of the solution is obtained by checking the relative error of
surface pressure distribution over each iteration, and for this shock-free flows, the number

13



of iterations for a convergent solution is 6.

The second numerical example is made to a transonic flow around a wing with a 6%
thick circular arc section of AR = 4 at a free-stream Mach number of 0.908. In order to

show the capability of shock- fitting, the solutions obtained with and without shock-fitting
are presented in Figure 7a through Figure 7d. Figures 7a and 7b are the surface Mach
contours and surface pressure coeffcient contours without shock- fitting, respectively, where

the shock is diffused but the supersonic flow region is clearly seen in the Figure 7a. Figures
7c and 7d are the solutions with shock-fitting, where the shock is clearly predicted. The
effect of shock-fitting is self-explanatory from these figures. In order to verify the accuracy
of the shock-fitting, the calculated results are ploted in Figure 7e along with the other
reference solution. The calculated pressure distributions compare very well with a TSD
FD result 17 and another IE result TM except the discrepancy at the station near the wing
tip. The location and the strength of the shock are correctly predicted by the present
method. For the present transonic flow case, 16 iterations are used to get a convergent
solution, where the first 10 iterations are used to locate shock and additional iterations are
used to fit shock.

The discrepancy near wing tip may be caused by the different tip shapes used in dif-
ferent computational models, and hence to have different tip- release effects. To investigate
this effect, the present computation is made for this case with different wing tip thickness.
Figures 8a through 8c are the results obtained by tapering off wing tip to 75%, 50% and
0% of the value at root section, respectively. Figures 8a - 8c show the variation of the
surface pressure coefficients at the station near tip due to the tip- release effect.

While above two examples are for the flows around sharp leading-edge wings, the next
two examples present the results for flows around round leading-cage wings. Figures 9a
through 9c are the calculated results for the transonic flow around a wing with 6% thick
NACA64A006 section of AR = 4 at a free-stream Mach number of 0.877. The calculated

pressure at root section is compared with the 2-D experimantal data 19 and the comparison
shows a good agreement.

The last numerical example is for the transonic flow around a wing with a symmet-
ric 10.6% thick NACA64A010A section of AR = 4 at a free-stream Mach number of 0.8.

The symmetric NACA64A010A wing section is obtained by averaging the upper and lower
surface coordinates of NACA64A010A airfoil. The calculated pressure distribution is com-

pared with the TSD finite-difference solution 2° as shown in Figure 10c, while Figures 10a
and 10b are local Mach and surface pressure contours, respectively. The comparison shows
that the two solutions have good agreement in terms of both location and strength of the
shock.

II-5. CONCLUDING REMARKS

An integral equation field-panel method based on the full-potential equation formu-
lation for transonic flows is presented. The method can be extended for handling flows
around general three dimensional configurations, although only non-lifting cases are im-
plemented and tested. The calculated wing surface pressure distribution is reasonably
correct including the location and the strength of the shock. As an alternative to the
grid refinement, the shock-fitting technique applied here does give a correct shock both in
location and in strength. The present IEM is effective in terms of the number of iterations

14



compared with those of FDM and FVM, althought the computational cost per IE itera-
tion is more expensive than those of FDM and FVM. The large grid size (for example,
Ax = 0.1c,/ky = 0.1c, Az = 0.25c) used here makes the scheme even more efficient. The
CPU time for a typical transonic flow case is around 165 seconds on Cray-YMP computer.
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PART III: MPP IMPLEMENTATION AND PERFORMANCE ANALYSIS

SUMMARY

This part presents the massively parallel processing (MPP) implementation of inte-
gral equation calculations and the performance analysis. For both two- dimensional (2D)

and three-dimensional (3D) flows, integral equation panel method computer codes are
converted into parallel CM-FORTRAN codes. Comparative study of computational per-
formance of CM-2 / CM-5 and Cray-YMP computers is made. The performance results
are obtained on CM-2 with 8k, 16k and 32k processors, and on CM-5 with 32, 64 and
128 nodes along with those on Cray-YMP with a single processor. The comparison of the
performance indicates that the parallel CM-FORTRAN code out-performs the equivalent
serial FORTRAN code for most cases tested.
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III-1. INTRODUCTION

In recent years, the processors of conventional vector supercomputers seem to be
approaching the limit in computational speed inherent in their technology. However, the
need for even faster computations continues to grow. As a consequence, massively parallel
computers are being developed as a possible solution. Massively parallel computers, such
as CM-2 and CM-5, are families of parallel computer architectures which may provide
orders of magnitude improvement in computation performance in the near future over
today's fastest conventional supercomputer. In fact the CM-5 computer with a maximum
16k nodes installed is a 2 TFLOPS computer in theory.

Computational fluid dynamics (CFD) is one of the areas which need super-fast com-
putational power. The massively parallel computers has potential to become the main
computational tool for CFD; it may replace the conventional supercomputers in the near
future. The integral equation panel method has the nature for processing data in aparallel
computing environment, and hence it is important to investigate this nature.

III-2. CM-2/CM-5 AND CM-FORTRAN

The Connection Machine CM-5 system is a scalable distributed-memory multiproces-
sor system. The major hardware elements of the system include front-end computers to
provide developing and execution environments and a parallel processing unit, which con-
sists of multiple nodes, to execute parallel operations. It supports both the SIMD (Single
Instruction Multiple Data) data parallel and MIMD (Multiple Instruction Multiple Data)
message passing programming models. The maximum possible configuration for a CM-5
system is 16k nodes, where k = 1024. The CM-5 used under the present study at NASA
Ames Research Center has 128 nodes installed. Each node has 32 MB of memory, one
SPARC processor and four vector processors for a theoretical peak performance of 128
MFLOPS. Therefore the CM-5 with 128 nodes has a theoretical peak performance of 16
GFLOPS.

Similar to the CM-5, the CM-2 is another MPP machine which was built before the

CM-5. The CM-2 supports SIMD data parallel computing mode. The parallel processing
unit contains up to 64k single-bit physical processors. The CM-2 used under this study
at NASA Ames Research Center has 32k processors. The aggregate peak performance for
this 32k CM-2 is about 2 GFLOPS.

The CM-FORTRAN language is an implementation of FORTRAN 77 supplemented
with array-processing extensions from the standard FORTRAN 90. These array-processing
features map naturally onto the data parallel (for SIMD model of parallel programming) ar-
chitecture of the CM-5 system, since the CM- FORTRAN allows array elements to be eval-
uated simultaneously. The most important difference of CM-FORTRAN from FORTRAN
77 is the treatment of entire arrays as objects, thus explicit indexing in CM-FORTRAN
is not always necessary. For example, it is not necessary to write Do-Loops or other such
control constructs to have the operation repeated for each element of arrays. On the other
hand for message passing models of parallel programming (MIMD), the program may be
written in FORTRAN 77 along with message passing routines.

III-3. INTEGRAL EQUATION PANEL METHODS

For incompressible flows, the governing equation is given by the Laplace equation
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which can be obtained from Eq. (20) after setting the compressibility to zero,

V2(I ' = 0 (30)

where ff is the velocity potential, V = VcI,.

The integral equation solution of Eq. (30) for source panel method, in terms of velocity

field (1_ = Vq,), is given by

'2(x,y,z)=

(31)
1 LGNG qi'J( 'rl' )gdds( ,

47ri =ik =1 ,,. d2 rl,

where the subscript c¢ refers to the free-stream condition, LG x NG is the total number

of panels; qi,j is the wing-surface source distribution, which is unknown to be determined
by applying boundary condition; ds is the infinitesimal surface area; the e'd is defined by

g'd = d/}_, and where d= (x - _)-_ + (y - rl)-f + (z - _)fc. It should be mentioned that
for two-dimensional flows, the surface integrals of Eq. (31) become line ntegrals and the
surface panels become line segments.

The wing-surface zero-normal-velocity boundary condition is applied at each control
point of all panels,

V(x, y, z). _ -- 0 on CPz,_: : I = 1, NL; K = 1, NG (32)

Applying Eq. (31) to Eq. (32), a system of equation is obtained,

[A]{q}= {B} (33)

where [A] is N × N aerodynamic influence coefficient matrix, and N = LG x NG; {q} is
a N × 1 unknown vector matrix containing qj for j = 1 to N; and {B} is a N × 1 known

vector matrix which is contributed from t_.

The solution procedure of the problem using source panel method involves three major

steps: (1) evaluation of integrals for g 2 times to construct matrices [A] and also [B]; (2)
solving the resulting dense linear system of Eq. (4); and (3) post-processing of aerodynamic
calculations. It should be noted that the Step (1) involves evaluating a large number of
integrals. The total number of integrals can be very large for aerodynamic problems, for

example, it can be in the order of 108 if LG x NG = 100 x 100. An important feature of
the Step (1) is that the calculation for each (x, y, z) and each (_, r/, _) can be performed
simultaneously for all (x, y, z) and all (_, r/, _). This feature of panel method calculation
leads itself in a natural way for processing data in a SIMD parallel computing environment.
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III-4. PARALLEL FORTRAN IMPLEMENTATION

The serial FORTRAN codes are converted into parallel CM-FORTRAN codes where
the CMAX translator is used to partially convert the 3D code. However the most of the
conversion is done manually.

List la is the program list of the subroutine for evaluating influence coefficient matrix,
[A], and the matrix {B } in serial FORTRAN. It is noted that this subroutine is nothing but
a two-level Do-loops with a If-conditional statements, which provides for evaluating each
element of [A] and {B). When the code is in execution on Cray-YMP, the vectorization
of the inner Do-loops is automatically done through the vectorization capability of the
FORTRAN 77 compiler.

List lb is the parallel CM-FORTRAM euqivalent of List la. A few things should
be mentioned. First, no Do-loop is seen here since in CM- FORTRAN entire arrays are
treated as objects and array elements are evaluated simultaneously. Second, the condi-
tional If-statement is represented in the form of WHERE-ELSEWHERE-ENDWHERE

format which allows the conditional processing to be done in parallel; Third, the CM-
FORTRAN intrinsic function SPREAD is used here to create two-dimensional arrays from
one-dimensional arrays by duplicating the elements in either row- or -column-directions as
desired for easy implementing parallel processing of statements like, XI(K, J) = X2(K)+

X3(J); Fourth, temporary scale variables, such as DYJ, DXJ and so on in serial FOR-
TRAN becomes two-dimensional arrays in CM-FORTRAN in order to implement parallel
processing. However, such arrays increase the total memory requirement of CM- code sig-
nificantly as compared with the serial FORTRAN code. For example, within the present
investigation it has been found that the CM-FORTRAN code with 4096 panels exceeded
the 2GB memory limit of the CM-2 computer with 16k processors.

The dense linear system of Eq. (33) is solved by the direct Gauss elimination method
for 2D and 3D cases and by indirect Jacobi's iterative method for 2D case also. List 2a

is the program list of serial FORTRAN version of Jacobi's iterative method, while List
2b is the parallel CM-FORTRAN version. From the list, it can be seen that the Jacobi's
iteration method on CM-FORTRAN is fully parallelized.

List 3a and List 3b are program list of the subroutine for evaluating aerodynamic
influence coefficients for three-dimensional flows in serial FORTRAN and parallel CM-
FORTRAN version, respectively. Similar to List la and List lb, the Do-loops in serial
version are replaced by data parallel statement, and the If-conditional statement is replaced
by parallel conditional statement. The major difference of 3D program from 2D program
is that the 3D program is more complicated.

III-5. PERFORMANCE STUDY

Figure 11 shows the CPU time for solving linear system using Gauss elimination. On
the CM-FORTRAN version, the system is solved by calling the Gauss elimination solver
from the CMSSL library on the CM-2. The comparison shows that the CPU time required
on CM-2 with 32k processors approaches to that required on Cray-YMP with the increase
of the problem size. For example, the CPU time required on CM-2 with 32k processors is
0.125 seconds for N = 32 which is much larger than that for Cray-YMP of 0.00152 seconds;
while this comparison becomes 277 seconds to 192 seconds when N - 2048. Therefore it
can be expected that when the problem size becomes large enough the CM-2 with 32k
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processorswill near- or out-perform the Cray -YMP. But on the other hand, it is found
that the direct method for large systemof equationsarevery expensivefor both serial and
parallel versions.

Table 1 gives the detailed performanceresults for 2D calculation on Cray-YMP and
CM-5 computers where the dense linear system is solved by a much more efficient indirect
Jacobi's iterative method. The performance of CM-5 in terms of MFLOPS is the equiv-
alent Cray-YMP performance. In Table 1, "Mat Coef" refers to evaluating aerodynamic
enfluence coefficients; "Lin Syst" refers to solving linear system using Jacobi method; and
"Total" refers to solving entire code. The sets of results from Table 1 have been extracted,
and are presented in Figures 12-15.

Figure 12 shows execution time for evaluating aerodynamic influence coefficient ma-
trix, [A], and the matrix [B] on Cray-YMP and CM-5 computers for different numbers
of panels. It can be seen that the CPU execution time decreases with the increase of the
number of CM-5 nodes after the size of the problem is large enough to fully use all nodes.
For example when N = 1024, the CPU time of 0.216 seconds with 32 nodes is reduced
to 0.114 seconds with 64 nodes, and then is further reduced to 0.061 seconds with 128
nodes. That is to say that whenever the number of nodes used is doubled, the CPU time
is almost reduced by a factor of 2 - a near-perfect parallelization. It is also seen that when
the problem size is large enough the CPU time required on CM-5, even with 32 nodes, is
significantly (note that Loglo-axis is used for execution time !) less than that required on
Cray-YMP.

Figure 13 is the CPU time for solving linear system using Jacobi iterations. The
results tell us that, when the N is large enough, CM-5 out-performs Cray- YMP and the
Jacobi method is very efficient.

Figure 14 shows the total CPU time for solving entire problem. The results are self-
explanatory. Figure 15 is a partial reproduction of Figure 14 for performance results on
Cray-YMP and CM-5 with 128 nodes, and it is represented in terms of MFLOPS. From

this figure it is clearly seen that the CM-5 performs at about 2 GFLOPS when N = 1024.
The speed achieved here is very encouraging, which is much faster than that achieved on
Cray-YMP.

For three-dimensional flows, the performance results are listed in Table 2 through
Table 5. Table 2 gives the detailed CPU time results on the Cray-YMP and the CM-5 to
construct the matrices. It is founded that the CM-5 out-performs the Cray-YMP by small
margin for N = 24 x 12. When the size is increased to N = 48 x 24 the CM-5 out-performs
the Cray-YMP by a much larger margin, even with only 32 nodes.

Table 3 displays CPU time for the Gaussian elimination routine, and it tells us that
the Cray-YMP out-performs the CM-5 for N = 24 x 12. However its performance relative
to the CM-5 decreases drastically when N increases; and in fact we can see that the CM-5
out-performs the Cray-YMP for N = 48 x 24.

Table 4 lists the CPU time for post processing calculations where the parallel CM-
FORTRAN version is not fully parallelized. Table 5 is the total CPU times and from the
table it is seen that for the larger probel tested under this study, the CM-5 out-performs
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the Cray-YMP.

III-6. CONCLUDING REMARKS

Source panel method computational codes for both 2D and 3D incompressible flows
are successfully implemented on the MPP computers using CM-FORTRAN language. The
linear system is solved by both direct Gauss elimination and efficient iterative Jacobi's
methods. The detailed performance results are obtained and analysed. The parallel CM-
FORTRAN code achieves a very high performance and for most of the cases tested here it
out-performs Cray-YMP supercomputer, which is very encouraging. Through this study,
it seems that the integral equation method is appropriate for parallel computation and a

high performance can be achieved.
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5% circular arc rectangular wing
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5% circular arc rectangular wing
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6% circular arc rectangular wing
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6% circular arc rectangular wing
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Figure 9a. Transonic flow, surface local Math contours.
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Figure 9b. Transonic flow, surface pressure coefficient contours.
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Figure 9c. Transonic flow, surface pressure coefficients.
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Figure 11. CPU time for solving linear system using Gauss elimination.
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Figure 13. CPU time for solving linear system using Jacobi method.
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Table 1. The detailed computational performance results

Task/Size(N)
Task N

Mat Coef 32

Lin Syst 32
Total 32

Mat Coef 64

Lin Syst 64

Total 64

Mat Coef 128

Lin Syst 128
Total 128

Mat Coef 256

Lin Syst 256

Total 256

Mat Coef 512

Lin Syst 512

Total 512

Mat Coef 1024

Lin Syst 1024

Total 1024

Cray-YMP

Time(s) _,IFLOPS
0.0015 144

0.0004 31

0.0070 33

0.0051 169

0.0012 34

0.0166 56

0.0196 177

0.0040 33

0.0470 79

0.0773 181

0.0097 31

0.1370 107

0.3050 183

0.0368 31

0.4450 131

1.2200 184

0.1420 31

1.6100 144

32-node CM5

Time(s)

0.008

0.012

0.027

0.009

0.014

0.031

0.011

MFLOPS

27

1

9

96

3

30

315

0.018 7

0.038 98

0.022 636

0.020 15

0.054 271

0.061 915

0.050 23

0.143 408

0.216 1039

0.106 42

0.391 593

64-node CM5

Time(s) MFLOPS
0.008 27

0.011 1
0.027 9

0.008 108

0.012 3

0.028 33

0.009 385

0.015 9

0.032 116

0.015 932

0.015 20

0.040 366

0.035 1595

0.031 37

0.087 670

0.114 1969

0.060 73

0.214 1083

128-node CM5

Time(s) MFLOPS
0.008 27

0.011 1

0.027 9

0.008 108

0.012 3

0.028 33

0.009 385

0.012 11

0.030 124

0.011 1272

0.012 25

0.034 431

0.022 2537

0.018 63

0.055 1060

0.061 3680

0.036 122

0.124 1870
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Table 2. CPU time in seconds for constructing matrices.

:,'_I:i(=Z4Xl _')size, N=

Cray-YMP 0.44 8.25

3z-node UMb U.Z4 2.34

64-node CM5 0.17 1.20

128-node CM5 0.12 0.65

] ] bz[=4uxz4)

Table 3. CPU time in seconds for Gaussian elimination.

size, N=

Cray-YMP

32-node CM5

64-node CM5

128-node CM5

288(=24xl 2)

0.58

1,43

2,11

1.65

1152(=48x24)

33.85

A R7

7.05

7.66
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Table4.CPU time in seconds for post processing.

size, N=

Cray-YMP

_2-noae UM,5

288(=:,'4X 1Z]

0.24

2.18

1 1_:,'(=4UXZ4)

4.30

9.45

64-node CM5 2.21 9.61

128-node CM5 2.18 9.61

Table 5. Total CPU time in seconds for incompressible flow.

size, N=

Cray-YMP

32-node CM5

288(=24xl 2)

1.33

3.86

64-node CM5 4.53

128-node CM5 4.00

1152 (=48x24)

46.60

_n RR

18.01

18.08
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1

2

SUBROUTINE MATELM

PARAMETER (N=32 ,M=33)

DIMENSION X(M),Y(M),XC(N),YC(N),DS(N),FN(N,N)

i, FT (N,N) ,RHS (N), SDE(N) ,CI (N) ,SI (N)

COMMON X, Y, XC, YC, DS, FN, FT, RHS, PI, CPI, CI, SI

1, UINF, VINF, SDE

DO 2 K=I,N

DO 1 J=I,N

IF (K .EQ. J) FN(K,J)=2.0*PI

IF (K. EQ. J) FT(K,J)=0.O

IF (K. EQ. J) GOTO 1

DYJ=SI (J) *DS (J)

DXJ=CI (J) *DS (J)

SPH=DS (J) *0.5

XD=XC (K)-XC (J)
YD=YC (K) -YC (J)

RKJ= SQRT (XD*XD+YD*YD)

BKJ=ATAN2 (YD, XD)

ALJ=ATAN2 (DYJ, DXJ)

GKJ=AIJ-BKJ

ZIK=RKJ*COS (GKJ)

ETK=-RKJ* S I N (GKJ )

RIS= ( (ZIK+SPH) *'2) +ETK*ETK

R2S= ( (ZIK-SPH) **2 )+ETK*ETK

QT=ALOG (RIS/R2S)
DEN=ZIK* Z IK+ETK*ETK-SPH* SPH

GNM=ETK*DS (J)

QN=2.0*ATAN2 (GNM, DEN)

UKJ=QT*CI (J) -QN*SI (J)

VKJ=QT*SI (J) +QN*CI (J)

FN (K, J) =-UKJ*SI (K) +VKJ*CI (K)

FT (K, J) =UKJ*CI (K) +VKJ*SI (K)
CONTINUE

RHS (K) =UINF*SI (K) -VINF*CI (K)
CONTINUE

RETURN

END

List la. Constructing matrices, 2D problem, in serial version.
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SUBROUTINE MATELM

PARAMETER (N=3 2, M=3 3 )

DIMENSION X(M),Y(M),XC(N),YC(N),DS(N),FN(N,N)

I, FT(N,N) ,RHS (N), SDE(N) ,CI (N), SI (N)

2, DYJ (N,N),DXJ(N,N), SPH(N,N) ,XD(N,N),YD(N,N)

3,RKJ(N,N) ,BKJ(N,N),ALJ(N,N),GKJ(N,N), ZIK(N,N)

4, ETK(N,N) ,RIS (N,N) ,R2S (N,N),QT(N,N), DEN (N,N)

5,GNM(N,N) ,QN(N,N), UKJ (N,N) ,VKJ (N,N)

6,DS2 (N,N),CI2 (N,N), SI2 (N,N)

7,XC2 (N,N),YC2 (N,N),XC3 (N,N) ,YC3 (N,N)

8, SI3 (N,N) ,CI3 (N,N)

LOGICAL MAIN_DIAG (N, N)

COMMON X, Y, XC, ¥C, DS, FN, FT, RHS, PI, CPI, CI, SI

1, UINF, VINF, SDE

XC2 = SPREAD (XC, DIM=I, NCOPIES=N)

YC2 = SPREAD(YC,DIM=I,NCOPIES=N)

XC3 = SPREAD (XC, DIM=2, NCOPIES=N)

YC3 = SPREAD (YC, DIM=2, NCOPIES=N)

SI 2=SPREAD (SI, DIM=I, NCOPIES=N)

CI 2=SPREAD (CI, DIM=I, NCOPIES=N)

SI 3=SPREAD (SI, DIM=2, NCOPIES=N)

CI 3=SPREAD (CI, DIM=2, NCOPIES=N)

DS2=SPREAD (DS, DIM=I, NCOPIES=N)

MAIN DIAG=DIAGONAL (SPREAD ( •TRUE. ,1, N) , .FALSE. )
m

WHERE (MAIN_DIAG)
FN = 2.0 * PI

FT = 0.0

ELSEWHERE

DYJ = SI2 * DS2

DXJ = CI2 * DS2

SPH = DS2 * 0.5

XD = XC3 - XC2

YD = YC3 - YC2

RKJ=SQRT (XD*XD +YD*YD)

BKJ=ATAN2 (YD, XD)

ALJ=ATAN2 (DYJ, DXJ)
GKJ=ALJ-BKJ

ZIK=RKJ*COS (GKJ)

ETK=-RKJ*SIN (GKJ)

RIS=((ZIK+SPH)**2) +

R2S=((ZIK-SPH)**2) +

QT=ALOG (RIS/R2S)
DEN=ZIK*ZIK + ETK*ETK -

GNM=ETK*DS2

QN=2.0*ATAN2 (GNM, DEN)

UKJ=QT*CI2-QN*SI2

VKJ=QT*SI2+QN*CI2

FN=-UKJ*SI 3+VKJ*CI 3

FT=UKJ* CI 3 +VKJ* SI 3

ENDWHERE

RHS=UINF*SI-VINF*CI

RETURN

END

ETK*ETK

ETK*ETK

SPH*SPH

List lb. Constructing matrices, 2D problem, in parallel version.
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C

SUBROUTINE JBINT (A, B)

PARAMETER (N=I28,M=I28)

C SOLVE AX=B USING APPROXIMATE JACOBI ITERATIONS

C SERIAL FORTRAN VERSION

C

i000

66

300

200

99

400

DIMENSION A(N,N),B(N),X(N,100)
INTEGER VAR

MAXITER=50

TOL=0. 001

AX0=0.0

XMAXDI F=0.0

DO i000 I = I,N

X(I,I) = 0.0

CONTINUE

K = 1

K= K+ 1

DO 200 I = I,N

DO 300 J=I,N
VAR = K-I

IF (J.EQ.I) GOTO 300

AX0=A(I,J)*X(J,VAR) + AX0
CONTINUE

X(I,K) = I/A(I,I)*(B(I)-AX0)

XDIF = ABS(X(I,K)-X(I,K-I))

IF (XDIF.ST.XMAXDIF) XMAXDIF=XDIF
AX0=0.0

CONTINUE

IF (XMAXDIF.LT. TOL) THEN
MAXK = K

GOTO 99

ENDIF

XMAXDIF = 0.0

IF (K.LT. MAXITER) GOTO 66

PRINT*, 'NOT CONVERGENT YET AFTER ITERATIONS : ' ,MAXITER
RETURN

CONTINUE

DO 400 I=I,N

B (I) =X (I,MAXK)
CONTINUE

RETURN

END

List 2a. Jaeobi method in serial version.
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SUBROUTINE jbite

PARAMETER (N=I28,M=I28)
C

C SOLVE AX=B USING APPROXIMATE JACOBI ITERATIONS

C PARALLEL CM-FORTRAN VERSION

C

DIMENSION A(N,N),B(N),X(N,100),ax0(N),c(N)
INTEGER VAR

REAL XDIFI00 (n)

COMMON/BLK2/A

COMMON/BLK3 /B
maxiter = 50

tol = 0. 001

x(:,l) = 0.0
k = 1

66 k = k + 1

var = k - 1

FORALL (I=I:N) AX0(I)=DOTPRODUCT(A(I, :),X(:,VAR))-A(I,I)*X(I,VAR)

forall (i=l:n) c(i)=a(i,i)

x(:,k)=l.0/c *(b-ax0)

xdifl00(l:n) = abs(x(:,k) - x(:,k - i))

XMAXD I F=MAXVAL (XDI F 100 )

IF (xmaxdif .LT. tol) THEN
maxk = k

GOTO 99

ENDIF

xmaxdif = 0.0

IF (k .LT. maxiter) GOTO 66

PRINT *, 'NOT CONVERGENT YET AFTER ITERATIONS: ' ,maxiter
RETURN

99 CONTINUE

b = x(:,maxk)

RETURN

END

List 2b. Jacobi method in parallel version.
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+

+

12 CONTINUE

ii CONTINUE

2 CONTINUE

1 CONTINUE

RETURN

END

SUBROUTINE VELWING(IVELCT,IWG, IG,JG,KG)

COMMON/BLK01/X(25,13),Y(25,13),Z(25,13)

.eoooe

DO 1 JS=I,NC
JSI=JS+I

DO 2 IS=I,NR
ISI=IS+I

XI=X (IS, JS)

oooooo

XC=(XI+X2+X3+X4)/4.0

eeooee

DO ii JR=I,NC/2

JRI=JR+I

DO 12 IR=I,NR

oeeeeo

XF=0.25* (X (IR, JR1) +X (IRI, JR) +X (IR, JR) +X (IRI, JR1) )

eeeooo

DX=XF-XC

eeeeeo

DIST=SQRT(DX*DX+DY*DY+DZ*DZ)

IF (DIST.LT. FARFD) THEN

IF(DIST.LT.0.0001) THEN

UC=0.5*UNX (IS, JS)

VC=0.5*UNY(IS,JS)

WC=0.5*UNZ(IS,JS)
ELSE

CALL VWS(XI,X2,ZI,Z3,YI,XF,YF,ZF,IS,JS,UC,VC,WC)
END IF

ELSE

AREAXZ=ABS ((X2-XI)* (Z3-ZI))

XYN=UNX (IS, JS)/UNY (IS, JS)

ZYN=UNZ (IS, JS)/UNY (IS, JS)

FACXZS=SQRT(I.0+XYN*XYN+ZYN*ZYN)
AREAS=FACXZS*AREAXZ

CONSTFF=OPI4*AREAS/(DIST*DIST*DIST)
UC=CONSTFF*DX

VC=CONSTFF*DY

WC=CONSTFF*DZ

END IF

eoeeeo

NBA= (JS-I) *NR+IS

A (KEQ, NBA) =A (KEQ, NBA) - (UC*UNX (IR, JR)

+VC*UNY(IR,JR)

+WC*UNZ(IR,JR))

List 3a. Constructing matrices, 3D problem, in serial version.
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&

SUBROUTINE velwing(ivelct,iwg, ig,jg,kg)

include '/usr/cm/include/cm/CMF_defs.h'

COMMON/BLK01/X(25,13),Y(25,13),Z(25,13)

eeeoeo

real unxm3(24,12,24),vnxm3(24,12,24),wnxm3(24,12,24)

.oo,ee

unxm3 = spread(unx(:nr,:nc),dim=3,ncopies=24)

o.oooo

xcm3 = spread(xcm,dim=3,ncopies=24)

ueeeee

xcm4 =spread(xcm3,dim=4,ncopies=6)

leQo_e

xfm3 = spread(xfm,dim=l,ncopies=12)

eeoeoo

xfm4 = spread(xfm3,dim=l,ncopies=24)

,eeeee

dxm4 = xfm4 -xcm4

d[stm4 = sqrt(dxm4*dxm4+dym4*dym4+dzm4*dzm4)

aeeeeo

where (distm4.1t.farfd)

where (distm4 .LT. 0.0001)

ucm4 = 0.5 * unxm4

eee.eo

elsewhere

xynm4 = unxm4/vnxm4

zynm4 = wnxm4/vnxm4

facxzsm4 = sqrt(l.0 + xynm4 * xynm4 + zynm4 * zynm4)

ddxm4 = ddxm4

ddzm4 = ddzm4

fac4 = opi4*facxzsm4*abs(ddxm4*ddzm4)/6.0
vwx4 = ffxll+ffx21+ffx31+ffx41+ .....

+ ffx44+ffx15+ffx25+ffx35+ffx45

eoo0oo

ucm4 = vwx4*fac4

eooooo

endwhere

elsewhere

zynm4 = wnxm4/vnxm4

facxzsm4 = sqrt(l+xynm4*xynm4 + zynm4*zynm4)

contm4 = opi4*areasm4/(distm4*distm4*distm4)

vcm4 = contm4*dym4
endwhere

forall (jr=l:nc/2,ir=l:nr,js=l:nc,is=l:nr)

& a(ir+(jr-l)*nr,is+(js-l)*nr) = a(ir+(jr-l)*nr,is+(js-l)*nr)

& - ( (ucm4 (is, js, ir, jr)

& *unxd4(is,js,ir,jr))+

& (vcm4(is,js,ir,jr)*vnxd4(is,js,ir,jr))+(wcm4(is,js,ir,jr)

& *wnxd4(is,js,ir,jr)))

return

end

List 3b. Constructing matrices, 3D problem, in parallel version.
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Development of A Shock-Fitting Field-Panel Method for 3D Transonic Flows

Hong Hu
Harnl)t(m Univcr,_ity

Dcl,artmtmt of M_thcmati('._
lImHl)tim , VirgiMa 23668, USA

ABSTR.ACT

The paper presents the devclol)mcnt of a shock-fittillg tield-paalel method 5)i" thrce-

diemnsion (3D) transonic flows. In this method, the full-potential equation, written in

the form of the Poisson's equatioa, is ._olved by integrM equ_Lti(m tield-p_mel method.

The solution consists of a wing surface source panel integral term, a field-volume panel

integral term of compressibility over a small limited domain, alld a shock panel integral

ternl. Due to the non-liilei_rity of flows, soluti(ms are obtain(',([ through tm itcrative

procedure. Instead of using a field-panel refill(_mellt l)ro('edure, a shock-fitting t(:chnique

is used to fit the shock. Fini_lly, numerical examples _.tre provided to demonstrate the

accuracy of the method.
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1. INTRODUCTION

The finite-difference method (FDbl) and finite-volume method (FVM) for solving

transonic flows have been well develol)edduring the past twenty years. Although the

Navier-Stokesequation fornmlation for the transonic flow computations has been under-

stood as the best model and the FDM and FVM are successfulin dealing with transonic

flows, the computation of the unsteady N_tvier-Stokesequations over complex three-

dimensional configurations is velT expensive,particularly for time-accurated unsteady

flow computations. Th(.rc ;-tl'(-also in;tjor technical (litficulti('s in FDM and FVM for

generating suitable grids for complex tln'ce-dinu_'nsional_erodyn_tmicc()nfigurattions.

The exI)eriencehas shownthat rather accurate solutionscan beenobtained for cer-

tain transonic flows using the inviscid modeling of the full-1)ot(_'ntia.1equation. For tran-

sonic flows without strong shocksnnd without nmssivesepar_tions, the full-potential

equation is an adequate approxim_ttion to the Navier-Stokesequations. The integral

equation method (IEM) for tit(.' i)ot(mtial equatiozl is an alter'native to the FDM and

FVM. Moreover, the IEM h_tsseveral_tdvantagesover the FDM and FVM. The IEM

involues evaluation of integrals, which is more accurate than the FDM and FVIvl, and

hencea com'segrid can been usedin IEM. The IEM automatically satisfies the far-field

boundary conditions and thereforeonly a smnll limited conq)utatiomd domain is ne,,de(1.

The generation of the three-dimensionalgrid for co,nplexconfiguration is not difficulty in

the IEM, since the mapping fiom physical plane to co,nputationzdplane is not required.

During tit(.' past fi_wye_wsintegral ('qua,tiontnethods for trnnsonic tlows h_Lw'1)cm,

developedby Piers _axdSloof (1979),Tseng (1984), Erickson and Strande (1985), Kandil

and Hu (1988) and Ogana (1989) for steadyairfoils, by Tseng (1984), Kandil aud Yates

(1986), Madson (1987) and Sinclair (1988) for steady wing and aircraft configurations,

and by Hounjet (1981) an(l I(andil an(1ttu (1990) for unstea:tdyairfoils by solving either

full-potential or transonic small disturbanceequationsusingboth surfaceand field panels.

The shock capturing techniqu(, was applied in these m,'th,_(ls. The method of I(an(lil

')



and Hu (1988) solves the full-potential equation for two-dimensional transonic flows,

where both stlock-capturing and shock-fitting techniques are applied. The capability of

capturing shocks with shock-capturing technique and improvcnlcnt of the shock with

shock-fitting technique was presented by Kandil and Hu (1988). The method is efficient

and engineering accurate. In the present paper a method for computing steady 3-D flows

is presented along with numerical examples to demonstrate the capability, accuracy att(l

the potentiM of the present IE scheme for subsonic and transonic ttow computations. The

method is the extension of the stet_(ly 2D method of Kandil mid Hu (1988) and i_ being

extented to unsteady 3D transonic flow computations. In fact, the 1)l'eScnt method has

been applied to unsteady transonic flows around a zero-thickness wing by Hu (I992, 1993)

using vortex panel method, lit or(h-r to use a coarse grid, which is particularly ilnportant

in 3D calculations, tile shock-fitting technique is apl)lied to the present transonic flow

calculations.

2. FIELD-PANEL FORMULATION

2.1 Governing Full-Potential Equation

The non-dinwnsional steady full-l,Otcnti.1 equation is giv(_n by:

02 4, 02 ,_ O'-'d_

o,_--_., + _ + _ = c; (1)

with

10p Op Op

and

p = [1+ --5--(1 - - - w_)] (3)

where the characteristic parameters, p_, a_ and c have been used; a is the sI)eed of the

sound, p the (h_nsity, and c ttw wing ro()t-('h(n',l longtll; and '.I, is the w_locity potential

(V(I, = $7 = (u, v, w)), G the COml)ressil,ility, and ,; the gas specific heat ratio.
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Equation (1) is not in the conscrwttiw_form but in tile form of the Poisson'sequa-

tion. By writting the full-potential equation in the Poisson'sform, thc nonlinearity of

tile transonic flows can be treated as non-honlogcneityand in terms of the IE solution,

this non-linearity is representedby fiekl volume integral term. And hence the classi-

cal surface-pmml method cml be extended into field-panel method for non-linacr flows.

Tile experiencehas shownthat suchnon-conscrwttiveformulation hasproduce accurate

solutions as long as the shock is not w'ry strong.

2.2 Boundary Conditions

The general boundary conditions are surfaceno-penetration condition, I(utta con-

dition, infinity condition, and wake kinematic and dynamic conditions. For the present

non-lifting flows, the only surface no-penetration condition aud infinity condition are

neededand they are given by:

x_. ,;,, = 0 on ,a(,_)= 0 (4)

and

V_--+0 away from g(IV)=0 and w(_V) =0

where _,a is the unit normal w_ctor of the wing surface, y(f) = 0.

(5)

2.3 IE Solution

By using tile Green's theorem, the integral equation solution of Eq. (1) in terms of

the v,.locity fiehl is giwm I,y

1 /_qY(('q'()g'dds(4r d _ (' ']' ()

+ _ d'e g,td{drld(

+ _lf_ '>((''l'q')':dd_(('''d'_c,)

(6)
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where 17o0is the free-stremnvelocity; q is the surface source distribution; the subscript,

S, refers to the shock sm'face; ds is the illfinitesimal surface _re[t; the vector dis given by

d= (x - _)7[+ (y - 'q)f + (z - ()k'; and e'd is defined by _'_ = @ IdT. It can be seen that the

infinity condition, Eq. (5), is automatically satisfied by the integral equation solution,

since the integrals become zero when d is large enough.

2.4 Field-Panel Discretisation

The fornmlation presented here can be ea.sily extended to general lifting flows by in-

eluding surface and wake vortex-panel integral terms, although the present computations

are only made to symmetric non-lifting flows. In this non-lifting computational model,

the wing surface is represented by a number of uniform rectanguhtr source panels. A uni-

form rectangular i)arallelopii)ed type of fiehl-vohmle, panels are also used throughout the

flow field. Constant surface mM w_lumc source (q and C) distributions are assumed over

wing / shock surface panels and field volume panels. The discretized integral equation

solution in terms of surfiwe and fi,,ld-vohm," pm.'l:_ then ])t't'Olll('S

LG NG

i=1 k=l i,k

L V M V N V

i=1 j'=l k=l , ,

M,_NS

+ ,l, ()
j=lk=l j,k

(7)

where the indices, i, j and k refer to the surface mad field panels; LG x NG is th,: total

number of wing surface pmmls; LV x AIV x NV is the total number of field panels; and

MS x NS is the total number of shock smt, we 1,an,'ls. A sketch of the eoml)utatiomd

model is given ill Figure 1, whih' the detailed wing sm'face panelling is given in Figure 2



where the exact number of wing surfacepanelsis shown.

3. COMPUTATIONAL SCHEME

3.1 Iterative Scheme

Due to the nature of tlle non-linearity of transonic flows, solutions are obtained

through an iterative procedure, where the wing surface source strength and the con>

pressibility over selected volume elemellts m'e updated through each iteration. The soht-

tion procedure follows the successful form of Kmldil and Hu (1988) of two-dimensional

coinputations. Here only the treatment of shocks for transonic flow is described.

3.2 Shock-Fitting Technique

It should be nientioned that mathematically the second (volume) integral term of

Eq. (7) includes a!l COml)ressibility etti!cts including shock discontinuity. Since a r_,lative

coarse grid is used in the present IE computational domain where only 10 field panels are

used over the wing chord, the contribution ()f the shock discontimfity is extracted from this

volume integral term and it is tel)resented explicitly by the thir(1 integral term of Eq. (7).

It is very important to use coarse grid in 3D calculations, since the integral calculations

over 3D field panels _tre very exl)ensiw.'. The strength of shock pmlels, qs.,is equal to the

difference of norton velocity across the shock. This can be shown by integrating Eq.

(1) over an infinitesimM volume around an infinitesimal area of the shock surfitce and

at)plying the divergence theo,'em, one gets

zx(v ) = v2,,- v,,, = (8)

where e is the infinitesimal thickness normal to the shock surface. By letting G'e = qs

and using Rankine-Hugoniot relation, one finally obtains

[(_- 1)M_,, + 2
(a + 1)M;e, - 1]rl, (9)qs

where the sul)s(,ril)ts 1 atnd 2 rcfvr t_ flu' ,'_)nditi_lts ah,'a_l am(l l)_'hin_l (_f the: sh<>ek,

r('spectively; and the sul)s('ript 7_ refers to the n,)Html ('()nq)()lu'llt to the sh()('k. The
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purpose to use Rankine-Hugoniot relation is to introduce the effect of entrol)y change

across the shock sinec tile full- potential tbrmulation uses isentropic flow assumption

which is not true in the shock region.

The constantly distributed, piece-wisecontinuous (in ttow direction) oblique shock

panels are used. The slope of shock 1)anelsis determined by the so called 0 - fl - M

relation as given by

[ _3"i1_in'_/3- 1tanO (i0)

where 0 is tile flow-deflection angle, :-tl_.d#' is the shock tulgle.

In the pres(,nt calcuhLtion, the shock prom term, the htst term of Eq. (7), becomes

active only after the sonic line (and hence the shock location) is fixed. In other words,

the shock-capturing technique is first used to locate the shock, wh,,'rc the Mm'man-Coh-

type-difference scheme is used in consistent with the mixed-nature of transonic flows.

The use of the Murman-Cole scheme is cquivel(!ut to the introducing of the artiiicial

dissipation. The use of this artificial dissapation scheme within a shock-fitting scheme

seems contradictory since some of their effects will cmlcel each other. But if we consider

the shock-fitting as the way to give a correct inviscid shock ;ul(t the Murmml-Cole scheme

as the way to give the artificial viscous effect, then the use of the Murman-Cole scheme

with shock-titting scheme will give it correct vise(ms shock, this is wh;tt it should b_,.

4. NUMERICAL EXAMPLES

The i)resesnt scheme is applied to r(_ctangula.r wings of symmetric eirculm' arc sections

with different aspect ratios (AR) at ditli_'rent free-stream Math numbers, one for shock-

fi'ee subsonic flow and one for transonic flow with a moderate shock. Tile half-span of

the wing surface (including upper and lower surfaces) is divided into 20 x 6 quadrilateral

panels as shown in Figure 2. The one-half of the computational domain is divided into

20 x 16 x 9 field volume elements in chord, normal and stmn directions, respectively. The

size of the computational domain is 2c x 1.5c x 2.25c and 2c x 1.5c x 3c for two AIR wdues

in the chord, normal and span directions, r(,spectiwqy. It should 1)_ noted that th,, both

T



surface-and field-p_melsizesin chord (flow) direction are aslarge as 10%of chord length.

Tile first nmnerical example is mttde to the flow around a wing with a 5% thick

circular arc section of AR = 3 at free-stremn Mach nulnber of 0.7, a shock-free subsonic

flow, where the non-linearity effect is small. Figure 3a is the calculated sm'face loc_d Math

contoures which shows that the flow is purly subsonic. The calculated surface pressure

coetficients ark presented in Figure 3b in terms of contours and Figure 3c in terms of line

plot, along with the COmlmtational results obtained by the non-linear LTRAN3 TSD FD

code of Guruswang mid Goorjian (1982) and by the linear SOUSSA IE code of Yates,

Cmmingham, Desmarais, Silw_ and Drobcnko (1982) i_t three span sti_tions located at

0%, 50% and 90% of semi-span. As the figure shows, the ln'Csc,My cadculated l>ressur,"

distributions are ill close agreement with the non-linear VrRAN3 results over the entire

wing surface and agreement with the linem" IE SOUSSA results except the discrepancy

over leading and trailing edges. The conw,rgence of the solution is obtained by checking

the relative error of surface pressure distrilmtion ow,r each iteration, and for this shock-

free flows, the number of iterations for a conwwgent solution is 6.

The second lmmm'ical eXaml)l,_ is made to a trmtsonic tlow _tYOUlld it wing with at 6%

thick circular arc section of ,4R = 4 at a free-stream Mach lnnnbcr of 0.908. In order to

show the capability of shock- fitting, the solutions obtained with and without shock-fitting

are presented in Figure 4a through Figure 4d. F'igures 4a alia 4b are the surt'ace Math

contours and surface pressure coeffcient contours without shock-fitting, where the shock

is ditfused but the supersonic flow region is clearly seen in the Figure 4a. Figures 4c and

4d are the solutions with shock-fitting, where the shock is clearly p,'edicted. The effect of

shock-fitting is self-explanatory f,'om these figures. In order to verify the accuracy of the

shock-fitting, the calculated results are ploted in Figure 4e along with the other reference

solution. The calculated pressure distributions compare very well with a TSD FD result

of B_dley and Steger (1972) and another IE result of Tseng (1984) except the discrepancy

at the station near the wing tip. The location and the strength of the shock are c_rrectly

predicted by the present method. For thv present transonic flow case, 16 iterati,ms are

8



used to get a convergentsolution, where the first 10 iterations are used to locate shock

and additional iterations are usedto fit shock.

The discrepancy near wing tip may be caused by the different tip shapes used in

different computational models, and hence to have different tip- release effects. To inves-

tigate this effect, the present computation is made for this case with different wing tip

thickness. Figures 5a through 5c arc the results obtained by tapering off wing tip to 75%,

50% and 0% of the value at root section, respectively. Figures 5a - 5c show the variation

of the smt'ace pressure coefficients at the station near tip due to the tip- release effect.

5. CONCLUDING REMARKS

An integrM ,',im_tion fi('hl-1)anel m,'thod based on the hdl-1)ot(mtial equation for-

mulation for transonic flows is l)resented. The method can be extended for handling

flows around general three dim('nsional configurations, although only non-lifting cases

are tested. The cidculated wing surface pr(,ssurc distril)ution is reasonably correct in-

eluding tile location and the strength of the shock. As an alternative to the grid refine-

ment, tile shock-fitting technique applied here does give a correct shock both in loca-

tion and in strength. The present IEM is effective in terms of the number of iterations

compared with those of FDM and FVM, althought tile computational cost per IE itera-

tion is more exi)ensive than those of FDM and FVM. The large grid size (for example,

Ax = 0.1c, Ay = 0.1c, Az = 0.25c) used here makes the scheme even more etficient. The

CPU time for a typical trmmonic flow case is around 165 seconds on Cray-YMP computer.

Currently tile lifting us well as unsteady effects are being added into the computation.
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Panel Method Computational Performance on CM-5 and Cray-YMP

Hong Hu
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ABSTRACT

Tile study of computational pel_formance of a two-dimensional source panel method

code on the massively parallel computer, CM-5, is made. A serial FORTRAN code running

on Cray-YMP supercomput(,r is converted into a parallel CM-FORTRAN code for rmming

on CM-5. Detailed performance results are obtained for CM-5 with 32 nodes, 64 nodes and

128 nodes and for Cray-YMP with a single processor. The comparison of the performance

indicates that CM-5 out-l)erforms Cray-YMP by a factor of 13 for the largest problem

tested and achieves a speed of about 2 GFLOPS.

1. INTRODUCTION

Computer with massively parallel processors (MPPs) may provide orders of mag-

nitude improvement in computational performance in a near future over today's fastest

conventional vector supercomputer. The MPP computers employ a large number of small

processors, which are much less expensive to produce than the vector supercomputer pro-

cessors, and connect them together such that the computations can be done in pa.rallcl to

achieve extrem high performance. Computational fluid dynamics (CFD) is one of the areas

which need super- fast computational power. The integral equation panel method is the

one of the CFD methods, which seems appropriate for parallel processing. The first author



and his co-worker1 did the performancestudy of an sourcepanel method computational

codeon CM-2, a MPP computer. In that work_, the resulting linear systemwassolvedby

a direct method, which was found to be inefficient and henceexpensivefor large system.

This short paper presentstile recentwork basedon Ref. [1], and herethe resulting linem"

system is solved by a much moreefficient iterative method.

2. ABOUT CM-5

The Connection Machine CM-5 system is a scalabledistributed-memory multipro-

cessorsystem. The major hardwareelements include front-end computer to provide de-

veloping mM execution environments and a parallel processingunit to execute parallel

operations. The system support both the SIMD (Single Instruction Multiple Data) data

parallel and MIMD (Multiple Instruction Multiple Data) messagepassingprogramming

models. The maximun possibleconfiguration for tile systemis 16knodes,where_."= 1024.

Each nodehasone SPARCprocessorand four w:ctor l)rocessorsfo,' _Ltherotical peak 1)er-

formance of 128MFLOPS. Therefore tile CM-5 with maxinmn 16_:nodesinstalled would

be a 2 TFLOPS machine theorctic_dly.

3. CFD-PANEL METHOD

Tile physical problemsconsideredhere arepotential flowsaround any non-lifting two-

dimensionM configurations. The governingequation to this type of problem is given by

the Laplace equation,

v ,I, =o (1)

where _ is the velocity potential, t7 = V_I,. This type of problems caaL be solved by

integral equation source panel methods (or called boundary element method). The integral

2



equation solution in terms of velocity field is given by

_7(x,y) = T7_

1 N (y-,l))", (2)

where q}s are surface source distributions, which are unknowns to be determined by apply-

ing boundary conditions; the subscripts g refers to the body surfaces; and N is the total

number of surface panels.

It shouht be noted that Eq. (2) involves evaluating a large number of integrals over

body sm'face if the value of N is large. The total number of panels can be very large for

three-dimensional aircraft configurations, a_ld it can be, for exmnple, in the order of 10 4.

An important feature of Eq. (2) is that the calculation for each (x, y) as_d each (_, 71) can

be performed simultaneously for all (x,y) and all ((,r/) with a single instruction. This

feature of panel method c',dculation leads itself in a natural way for processing data in a

SIMD parallel computing enviromnent.

By applying body surmce z_,ro-normal-v,,locity condition at each (x, y) = (x j, y j) for

j = 1 to N, a N x N linear system of equations is obtained as

[AI[ql=[B ] (3)

where [A] is N x N aerodynamic influence coefficient matrix; [q] is a N x 1 unknown vector

matrix containing qi f_r i = 1 to N; alia [B] iS it N x 1 known w_ctor matrix which is

contributed from the free-streain velocity, 1_.

The solution procedure for this problem using panel method involves four steps: (a)

generating body geometry information; (b) evaluating integrals of Eq. (2) for i = 1 to N

and for (x,y) = (xs, yj) with j = 1 to N to construct [A] matrix; (c) solving resulting

linear system of Eq. (3); m_d (d) post-processing, aerodynamic calculations using Eq. (2).

The experience shows that the Steps b mid c takes most computational time, which is



partically true for three-dimensionalcomputations2.

4. PERFORMANCE

As mentioned earlier, this work is basedon that of Ref. [1]. Due to the inefficiency

of tile direct solver1, tile resulting linear systemis solvedby an indirect, iterative method.

The Jacobi mathod is employed, since the method is very much appropriate for parallel

environment. List 1and List 2 are the subroutinesfor Jacobiiterations in serial FORTRAN

and parallel CM- FORTRAN versions, respectively.

The serial code with different numbers of panels (N) is first executed on Cray-YMP su-

percomputer using single processor to provide the basis for performance comparison. The

computational performance in terms of MFLOPS is obtained using Cray-YMP's PERF-

TRACE utility. The parallel CM-FORTRAN code is then executed on CM-5 with 32

nodes, 64 nodes and 128 nodes under slicewise model.

Table 1 gives the detailed performance results for Cray-YMP and CM-5 computers

with wu'ying size of the problem. The l)erformmlce of CM-5 in terms of MFLOPS is the

equivalent Cray-YMP performance. In Table 1, "Mat Coef" refers to evaluating aero-

dynamic enfluence coetticients; "Lin Syst" refers to solving linear system using aacobi

method; and "Total" refers to solving entire code. The sets of results from Table 1 have

been extracted, and are presented in Figs. 1-4.

Fig.1 shows execution time for evaluating aerodynamic influence coefficient matrix,

[A], and the matrix [B] on Cray-YMP and CM-5 computers for different numbers of panels.

It caal be seen that the CPU execution time decreases with the increase of the number of

CM-5 nodes after the size of the problem is large enough to fully use all nodes. For examl)le

when N = 1024, the CPU time of 0.216 seconds with 32 nodes is reduced to 0.114 seconds

with 64 nodes, and then is further reduced to 0.061 seconds with 128 nodes. That is to

say that whenever the number of nodes used is doubled, the CPU time is ahnost reduced



by a fiwtor of 2 - a near-perfectparallelization. It is alsoseenthat when the problem size

is large enough the CPU time requiredon CM-5, evenwith 32 nodes,is significantly (note

that Loglo-axis is used for execution time !) less than that required on Cray-YMP.

Fig. 2 is the CPU time for solving linear system using Jacobi iterations. The results

tell us that, when the N is large enough, CM-5 out-performs Cray- YMP a_ld the Jacobi

method is very efficient.

Fig. 3 shows the total CPU time for solving entire problem. The results are self-

explanatory. Fig. 4 is a partial reproduction of Fig. 3 for performance results on Cray-

YMP and CM-5 with 128 nodes, and it is represented in terms of MFLOPS. From this

figure it is clearly seen that the CM-5 performs at about 2 GFLOPS when N = 1024.

The speed achieved here is very encouraging, which is much faster than that achieved on

Cray-YMP.

5. CONCLUDING REMARKS

A source i)mlel method code is successfully implemented on the MPP computer CM-5

using CM-FORTRAN laJ_guage. The linear system is solved by the efficient iterative Jaeobi

method. The detailed performance results are obtained and analysed. The parallel CM-

FORTRAN code achieves a very high performance and for most of the cases tested here it

out-peit'orms Cray-YMP supercomputer. The highest speed achieved in this investigation

is about 2 GFLOPS which is very encouraging.
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SUBROUTINE JBINT (A, B)

PARAMETER (N=I28,M=I28)

C SOLVE AX=B USING APPROXIMATE JACOBI ITERATIONS

C SERIAL FORTRAN VERSION

C

i000

--66

300

d

200

_99

4OO

DIMENSION A(N,N),B(N),X(N,100)
INTEGER VAR

MAXITER=50

TOL=0.001

AX0=0.0

XMAXDIF=0.0

DO i000 I = I,N

X(I,Z) = 0.0
CONTINUE

K = 1

K = K+ 1

DO 200 I = I,N

DO 300 J=I,N

VAR = K-I

IF (J.EQ.I) GOTO 300

AX0=A(I,J)*X(J,VAR) + AX0

CONTINUE

X(I,K) = I/A(I,I)*(B(I)-AX0)

XDIF = ABS(X(I,K)-X(I,K-I))

IF (XDIF.GT.XMAXDIF) XMAXDIF=XDIF
AX0=0.0

CONTINUE

IF (XMAXDIF.LT. TOL) THEN

MAXK = K

GOTO 99

ENDIF

XMAXDIF = 0.0

IF (K.LT. MAXITER) GOTO 66

PRINT*,'NOT CONVERGENT YET AFTER ITERATIONS:',MAXITER

RETURN

CONTINUE

DO 400 I=I,N

B (I) =X (I, MAXK)

CONTINUE

RETURN

END

it i
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SUBROUTINE jbite

PARAMETER (N=I28,M=I28)

C SOLVE AX=B USING APPROXIMATE JACOBI ITERATIONS

C PARALLEL CM-FORTRAN VERSION

C

DIMENSION A(N,N),B(N),X(N,100),ax0(N),c(N)
INTEGER VAR

REAL XDIFI00(n)

COMMON/BLK2/A

COMMON/BLK3/B

maxiter = 50

tol = 0.001

x(:,l) = 0.0

k = 1

66 k = k + 1

var = k - 1

FORALL (I=I:N) AX0(I)=DOTPRODUCT(A(I,:),X(:,VAR))-A(I,I)*X(I,VAR)

forall (i=l:n) c(i)=a(i,i)

x(:,k)=l.O/c *(b-axO)

xdifl00 (l: n) = abs(x(:,k) - x(:,k - I))

XMAXDIF=MAXVAL(XDIFI00)

IF (xmaxdif .LT. tol) THEN

maxk = k

GOTO 99

ENDIF

xmaxdif = 0.0

IF (k .LT. maxiter) GOTO 66

PRINT *, 'NOT CONVERGENT YET AFTER ITERATIONS:' ,maxiter

RETURN

99 CONTINUE

b = x(:,maxk)

RETURN

END



Table 1. Tile detailed computational performance results

Task/Size(N) Cray-YMP 32-node CM5 64-node CM5 128-node CM5

Time(s) ' MFLOPS
0.008 27

0.011 1

0.027 9

0.008 108

Task N

Mat Coef 32

Lin Syst 32
Total 32

Mat Coef 64

Lin Syst 64
Total 64

Mat Coef 128

Lin Syst 128
Total 128

Mat Coef 256

Lin Syst 256
"lbtal 256

Mat Coef 512

Lin Syst 512
Total 512

Mat Coef 1024

Lin Syst 1024
_Ibtal 102,t

Time(s) MFLOPS
0.0015 144

0.0004 31

0.0070 33

0.0051 169

0.0012 34

0.0166 56

0.0196 177

0.0040 33

0.0470 79
0.0773 181

0.0097 31

0.1370 107

0.3050 183

0.0368 31

0.4450 131

1.2200 184

0.1420 31

1.6100 144

Time(s) MFLOPS
0.008 27

0.012 1

0.027 9

0.009 96

0.014 3

0.031 30

0.011 315

0.018 7
0.038 98
0.022 636

0.020 15

0.054 271

O.U61 915

0.050 23

0.143 408

0.216 1039

0.106 42

0.391 593

Time(s) MFLOPS
0.008 27

0.011 1

0.027 9

0.008 -108

0.012 3

0.028 33

0.009 385

0.015 9

0.032 116
0.015 932

0.015 20

0.0,10 366

0.035 1595

0.031 37

0.087 670

0.11,t 1969

0.060 73

0.214 10_3

0.012

0.028 33
0.009 385

0.012 11

0.030 124

12720.011
0.012

0.034

25

431

0.022 2537

0.018 63

0.055 1060

0.061 3680

0.036 122

0.124 1870
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Calculating aerodynamic influence coefficients

© Cray-YMP

"- 32-node CM5

[] 64-node CM5

" 128-node CM5

10 "3

I I ,I

64 128 256

Number of panels, N

I

512

I II I1_
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Solving the linear system (NxN) using Jacibi's method

_O----- Cray-YMP

-" 32-node CM5

..- 64 -node CM5

"= 128-node CM5

10 .3

64 128 256

Number of panels, N

512 1024



101 _- Solving the entire problem

0 Cray-YMP

/ -" 32-node CM5 /,_)

10° [ [] 64-node CM5

d 10 "1

.E_

13_ 0.20 1
I

10 .3

104 ,,, I I I .... I,,,, ,, I
32 64 128 256 512 1024

Number of panels, N



Solving the entire problem

Cray-YMP

128-node CM5

10o
32 64 128 256

Number of panels, N

512 1024
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Study of integral equation methods
for transonic flow calculations

Hong Hu

Department of Mathematics, Hampton University, Hampton, Virginia 23668, USA

(Received 24 September 1991; accepted 17 December 1992)

An integral equation method based on the full-potential equation for transonic
flow calculations is presented. The full-potential equation is written in the moving
frame of reference, in the form of the Poisson's equation. The integral equation
solution in terms of the velocity field is obtained by the Green's theorem. The
numerical solutions are obtained by a time-marching (if unsteady flows), iterative
procedure. The computational examples presented in the present paper include
steady and unsteady, two-dimensional (airfoil) and three-dimensional (wing)
flows. The method of combining the integral equation solution with the finite-
volume Euler solution is also presented. Through studying the method and
computational examples, the capabilities and limitations of the transonic integral
equation method are discussed. Finally, the need for further research is addressed.

Key words': integral equation, field/boundary elements, full-potential equation,
transonic flow.

INTRODUCTION

Starting in the 1970's a great deal of progress has been
made in solving transonic flow using the finite-differ-

ence method (FDM) and finite-volume method

(FVM). Although the FDM and FVM are successful
in dealing with transonic flows, there are several draw-
backs associated with these methods. In the FDM and

FVM, fine grid points are needed over a large computa-
tional domain. Moreover, there are major technical

difficulties in generating suitable grids for complex

three-dimensional aerodynamic configurations.
On the other hand, the integral equation method (IEM,

or called field-boundary element method, field-panel

method) has several advantages over the FDM and
FVM. The IEM involves the evaluation of integrals,

which is more accurate and simpler than the FDM and

FVM. The IEM automatically satisfies the far-field bound-

ary conditions and hence only a small limited computa-
tional domain is needed. The IEM does not suffer from

the artificial viscosity effects, as compared to FDM and

FVM for shock capturing in transonic flow computa-
tions. Morevover, the generation of the three-dimensional

grid (field-elements) for complex configuration is not diffi-
cult in the IEM, since the surface fitted grid is not required.

Engineering Analysis with Boundao' Elements 0955-7997/93/$05.00
(t, 1993 Elsevier Science Publishers Ltd.

Because of these advantages, it is highly desirable to

fully develop the IEM to treat transonic flows, lntegral

equation methods for transonic flows have been devel-
oped by several investigators. I 8 The author and his
co-workers have been devoted to the development of

the IEM, for steady and unsteady transonic airfoil and
wing flow computations, during the past several

years. 9-t5 In the present paper, the recent develop-

ment, along with the computational examples, are pre-
sented. Through studying the method and the

numerous computational examples, the capabilities
and limitations of the transonic integral equation

method are discussed. Finally, the needs for further
research are addressed.

FORMULATION

Full-potential equation

In the space-fixed frame of reference, the continuity and

momentum equations for unsteady, inviscid compres-
sible flows with negligible body forces are given by

Dp
--+pV.V =0 (1)
Dt

_ lOl _ PAGJ[ BL&r,_ NOT F"II..MED
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7 I14 ¢l_+-._..°d.

•o •

Fig. 2. IE computational domain.

l OtW

Wwl Ot

and

+-Vr'nw=0 on w(r,t) =0 (16)

VCp=0 on w(r,t)=0 (17)

where n is the surface unit normal vector; the subscripts

g and w refer to the body (wing or airfoil) and wake

surface of g(r) = 0 and w(r, t) = 0, respectively; zXCp is
the pressure jump across the surface; and the subscript

sp refers to edge of separation.

Integral equation solution
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integrals and the volume integrals become field surface
integrals; the coordinates, z and (, are not used; and

the coefficients of 1/47r are replaced by 1/27r. The last

integral term in eqn (18) is used only for the shock-fit-

ting solutions in steady two-dimensional flows.

By using the Green's theorem, the integral equation

solution of eqn (8), in terms of the relative velocity

field, is given by

V_(x,y,z,t) : - Vo(t ) - f_(t) × (r- re)

1 JIeqg("r/'_")47r d2 edds

+ lJI+ "/e(,, rL (, t) ×dd3 as

(18)
1 NW

d3 dds

1

4_rJ I JvG("n'_' t) ead'dodffd 2

I J,+qs(+''l'+'qe`'d+d'

where q is the surface source distribution; 7 is the

surface vorticity distribution; the subscript S refers to
the shock surface; the index NW is the total number

of wake surfaces; ds is the infinitesimal surface area;

the vector d is given by d = (x-_)i+ 0'-r/)j +

(z - ()k; and ea is defined by ea = d/[dl.

It should also be noticed that eqn (18) has been
written for three-dimensional flows. For two-dimen-

sional flows, the above surface integrals become line

COMPUTATIONAL SCHEME

A sketch of the IE computational domains is shown in
Fig. 2 for three-dimensional flows, due to the nature

of the nonlinearity of the flow, the solutions are

obtained through a time-marching (if unsteady

flows), iterative procedure, where the compressibility
(Gj), unsteadiness (G2) , and the wake shape and

its strength are updated through each iteration. The

details of the solution procedure can be found in Refs
9 and 14.

NUMERICAL EXAMPLES

The integral equation method has been applied to steady

and unsteady, two-dimensional and three-dimensional

transonic flows. The computational results, along with

the experimental data and other computational results,

are presented in the following sub-sections.

Steady subsonic airfoil flow

The computational results for a steady compressible

shock-free flow at a high subsonic Mach number
are presented here as the first numerical example. The

purpose is to validate the IEM for nonlinear compressi-
ble flows. The surface pressure distribution 9']° is shown

in Fig. 3, along with the finite-difference (FD) Euler
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' l
Fig. 7. Hybrid IE-FV computational domain for unsteady flows.

may be required to narrow the shock region, and to
predict the shock motion as accurately as possible.

CAPABILITIES AND LIMITATIONS

The steady and unsteady integral equation methods for

nonlinear compressible flows have been developed. The

methods have been applied to steady airfoil, unsteady
airfoil and unsteady wing flows, with or without

shocks. The comparison of the present solutions with
experimental data and FD or FV solutions shows that

the integral equation methods, based on the linear theo-

rem, can handle nonlinear flow problems accurately.
For transonic flows with shocks of weak to moderate

strength, IEM predicts shocks correctly, with the excep-
tion of slight underprediction of the shock strength (Fig.

4). For unsteady flows, the motion of the shock agrees

with that predicted by FV Euler solutions (see Refs 9

and 11), and the predicted lifting coefficient agrees with
one obtained by FV Euler computation (Fig. 5).

The advantages of the small computational domain

and coarse grid have been utilised in the present IEM.
For airfoil flow computations, a computational domain

of 2 × 1.5 airfoil chord length with 64 × 60

field-elements has been used. The application of a

smaller number of field-elements, with larger
field-elements over the outer region inside the domain,

is possible. For wing flow computations, a compu-

tational domain of 2.3 × 0.75 × 15 wing root chord
length with 23 × 9 × 9 field-elements has been used,

although finer field-elements around the shock region

may be required to accurately predict the shock loca-
tion and its strength.

The number of iterations used for steady flow compu-

tations are approximately 25 for airfoil and five for wing
flows, respectively. This is much less than those used in

FD and FV computations (usually of the order of 103).
For unsteady flows, the number of iterations used in

each time step range from one to three. Large time steps
have also been used in the present unsteady flow compu-
tations. This is also one of the advantages of IEM. For a

whole cycle of pitching oscillation, for example, a total

*.4

°,2

Cp

o . o....o---o_

p_S

/

¢
!

!
I

105

Euler [19]
0 C Present

Fig.

1.2

|.0

0.8

0.6

%

0,4 --

0.2

0.0
0.0

9. Lifting

Experiment [20]
0 0 Present

/
/

/
/

/
/ O

/ O
/

/ 0
/

//0

/0
/0

g

I ! I I

2.5 $.0 7.$ 10.0

ot (delrHe)

coefficients, ramp motion,
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of 36 time steps have been used; while a typical implicit

FD or FV computation needs about 500 time steps for
the same case. Therefore, IEM is nevertheless efficient

in terms of the number of interations and the time step
size, as compared to existing FDM and FVM.

By examining the numerical examples presented here

it is found that, on the other hand, all these compu-
tations are restricted to the flows with shocks of weak

to moderate strength. As the best of the author's knowl-

edge, all existing integral equation solutions, based on

potential flow formulation for transonic flows, are

restricted to flows without strong shocks. The potential

flow assumption neglects the effects due to viscosity,
vorticity and entropy production. For transonic flows

with strong shocks and massive separation, the poten-
tial flow assumption is not an adequate approximation
to the real flow.

0_ ._,. o Oo.

1_¢ _tel _tm t_

.a _7
I I I I 1

• _ .4 .6 .8 ! .0

Fig. 8. Euler domain and Cp distribution, a strong shock case,
steady flow, M_ = 0"84, (_ = O.
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Unsteady transonic wing flow computations using
field-boundary element methods

Hong Hu

Department of Mathematics, Hampton University, Hampton, Virginia 23668, USA

An unsteady integral equation (or called field-panel, field-boundary element)
scheme for solving the full-potential equation for transonic unsteady wing flows
has been developed. The unsteady full-potential equation has been written in a
moving frame of reference, in the form of the Poisson's equation. Compressibility
and unsteadiness have been treated as non-homogeneity. The integral equation
solution in terms of velocity field is obtained by the Green's theorem. The
solution consists of a wing surface (boundary elements) integral term of vorticity
distribution, a wake surface (boundary elements) integral term of free-vortex
sheet and a volume (field-elements) integral term of compressibility and
unsteadiness over a small limited domain around the wing. Numerical solutions
are obtained by a time-marching, iterative procedure. Time-derivative term is
calculated by a second-order backward finite-difference scheme. To be consistent
with the mixed-nature of flows, the Murman-Cole type-difference scheme is used
to compute the derivatives of the density. The present scheme is applied to flows
around a rectangular wing at transonic speed undergoing acceleration motion and
transient pitching motion, respectively. The time history of wing surface pressure
distributions has been presented.

Key words. unsteady transonic wing flows, full-potential equation, moving frame
of reference, field-boundary elements, integral equation.

NOTATION

G
d

ds

g
G

Gi

G2

Mi
Mo

Mo
ff

oxyz
OXYZ

Y

l
y

Surface pressure coefficient

Distance vector pointed from sender to receiver
Infinitesimal surface area
Unit vector of d

Wing surface
G 1 -+-G2

Compressibility
Unsteadiness

Initial value of M o
Translation Mach number

Rate of change of Mo
Surface normal unit vector

Moving frame of reference

Space-fixed frame of reference
Position vector

Pivot point vector
Time

Absolute velocity

Engineering Analysis with Boundary Elements 0955-7997/92/$05.00
1992 Elsevier Science Publishers Ltd.

17e Rotation velocity

17o Translation velocity
17r Relative velocity
w Wake surface

c_ Angle of attack
_i Initial value of c_

& Rate of change of c_
"7 Vorticity

t_ Gas specific heat ratio

p Density

Absolute velocity potential
Angular velocity

INTRODUCTION

Starting in 1970, a great deal of progress has been made

in solving transonic flows by using the finite-difference

method (FDM) and finite-volume method (FVM).
Although the Navier-Stokes equation formulation for

the transonic flow computations has been understood as
the best model and the FDM and FVM are successful in

dealing with transonic flows, the computation of the

- 99 la_ PAGE BLANK NOT F"N.MED



Unsteady transonic wing flow computations using field-boundary dement methods 101

The associated boundary conditions are described in the
next sub-section.

Boundary conditions

The boundary conditions are surface no-penetration
condition, Kutta condition, infinity condition, wake

kinematic and dynamic conditions. They are described
as follows;

_,.n_ : 0 on g(_') : 0 (7)

_cpt_p: 0 (8)

V_ _ 0 away from g(F) = 0 and w(_', t) = 0 (9)

] 0 tW

]Vw I Ot
+ 17r'ff_,.=0 on w(F,t)=O (10)

_G = 0 on w(Z,t) = 0 (11)

where ff_ is the unit normal vector of the wing surface,

g(F) = 0; Cp is the surface pressure coefficient; the
subscript sp refers to the edges of separation, and in the

present scheme the only separation from the wing

trailing edge is considered; and w(r-', t) = 0 is the wake
surface.

IE solution

By using the Green's theorem, the integral equation

solution of eqn (2) in terms of the relative velocity field

is given by

_,(x,>,,-,t):- C(t)- fi(t)× IF-r.)

+ _--_ d3 ds((,_,()

+ -4-_ w d 3 d ds" _' O' _ ' t'()

1 _,
d 2 t) O'ad(dr/d(

(12)

where _ is the surface vorticity distribution; the
subscripts g and w refer to the wing and wake

surfaces, respectively; ds is the infinitesimal surface
area; the vector d is given by d=(x-()[

+(y- rl)f+ (z - ()/_; and Ya is defined by O"a = d/Id I.

In eqn (12), the first integral term is the contribution

of the wing surface vorticity; the second integral term is

the contribution of the wake vorticity; and the third

integral term is the contribution of the full compressi-

bility and the unsteadiness. It should be noticed that the

infinity condition, eqn (9), is automatically satisfied by

the integral equation solution. It should also be noticed
that the integrand of the volume integral term, the third

integral term in eqn (12), decreases rapidly with
increasing distance, d, not only because of the factor

of lid 2 but also G(_,r/,Ct ) diminishes rapidly with

increasing distance. Consequently, for computational

purposes, the volume integral term needs to be

addressed only within the immediate vicinity of the
body. This is the beauty of the IE methods.

COMPUTATIONAL SCHEME

Discretisafion

A sketch of the computational model, with the relative

size of the computational domain, is shown in Fig. 2.

The wing and its wake are represented by triangular
vortex panels. A uniform rectangular parallelepiped

type of volume elements are used throughout the flow

field. The discretised integral equation solution becomes

_,(x,y,_,,)

: -go(t)-fi(t) × (_- zp)

! I.G NG I Ig d 3 ds((, '1, ()
i=l k=l ,,A

d 3 ds((, r/, q', t)

1 LV MV NV

(13)

where the indices, i, j and k refer to the surface panels
and field elements; LG × NG is the total number of wing

surface panels; LW × NW is the total number of wake
surface panels; and LV × MV × NV is the total number
of field elements. A constant G-distribution is used over

the small field element, while a linear %distribution is

used over the small surface panel.

T_ view

V"-

u..)[t

Fig. 2. Computation_kmodel, based on Reference 11.
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1.00 1.00

12)_

0

0.00

-I .00

z=1.11
z=278
z=4.44
z=6.11
z=7.78

--2 I 0 S 0 & ...... 2 :O& ...... 4:&& ...... 6:&& ...... 81_& ...... 110, _0

X

Fig. 6. Cp distribution at Mo(t)= 0"8 over wing surface,
acceleration motion.

The time derivative term of the potential, (0 'e_/Ot) ("),

can be numerically calculated by _(n) and (I,(n-D, and

hence ¢(_1 and (I,(_-11 must be calculated by integration

of the velocity field numerically. In order to avoid

numerical error when doing this numerical integration,

eqn (6) is used to compute (O'¢/Ot) (n) distribution.

Thus eqn (6) takes the form

O,_b'_ (') l _ p(.-I)" '

Ot-,/ _- 1 (17)

With G_ "1 obtained from eqn (16) and (O'_b/Ot) C")

obtained from eqn (17), Step I is repeated until the

solution converges.

Step 3 - at time step (k = n + I)

Step 2 is repeated for time step (n + 1).

Q_

O

0.00

ALPHA t = 6_ t= 2

-- 1100 Z/// [ ALPHA('()= B:, t= 6

= o =

-2,00 ......... r ......... _ ......... I ......... I ......... ]
0.00 200 4.00 6.00 8.00 10.00

X

Fig. 8. Unsteady Cp history at z = 4.44, pitching motion.

NUMERICAL EXAMPLES

The present scheme has been applied to a zero-thickness,

rectangular wing with aspect ratio of two. The half-span

of the wing and the wake is divided into 10 × 6 and

10 × 10 quadrilateral panels, respectively. Each quadri-

lateral panel consists of two triangular panels. The one-

half of the computational domain is divided into

23 × 9 × 9 field volume elements in x,y and z direc-

tions, respectively. Two numerical examples are pre-

sented as mentioned before. The first one is the

acceleration motion and the second one is the pitching

motion.

Acceleration motion

In this numerical example, the wing is given an

acceleration motion at an angle of attack of 5 degrees.

1.00 1.00

0.00

Q_

LD

-1.00

ALPHA(t)= 6 °, t= 2
ALPHA(t_= 7 °, t= 4

ALPHA(t_= 8 °, t= 6
ALPHA(t)= 9 °, t= 8
ALPHA(t)=IO °, t=lO

-2.00 ......... ,......... I ......... i ......... I ......... I

0.00 2.00 4.00 6.00 8.00 10.00

X

Fig. 7. Unsteady Cp history at z = 1.11, pitching motion.

CL

(._)

0.00

-1.00

-2.00 i ill, r, ,illl Iilil,l r i, fllli,llIll If, fill I r II,,, I, I

0.00 2.00 4.00 6.00 8.00 10.00

X

Fig. 9. Unsteady Cp. history at z = 7-78, pitching motion.
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Comparative study of computational performance of CM-2 and Cray-YMP for boundary

element computations

lhmg llu

Deparlment of hlothcmulics, Ilompton University, lhmltston, t"Jrgmia, USA

&

Isaac T. Jackson"

Det)artmc_ll oJ'Con;t)uter Science, lht.q;lo. University, Ihmll)lotJ, I )rgmn_, GtS.I

A comparative study of computational perlbnnancc of CM-2 and Cray-YMP computers fur n simple two-dimcl_iunal source
boundary element (panel) code has been made, A serial FORTRcMN77 cod,: rulu_iag oa cray-YMP supercomputer has bccu

converted into a p_uallel CM-F(IRTRAN code lbr framing in CM-2 massively parallel computer, Detailed performance results
are obtained lbr CM-2 v*ith 8k, 16k, m}d32k processors and lbt Cray-YMP, The comparison of the pe.rlbnnmlca indicates tlmt

the imquence ofcoelficient calculations on CM-2 with 32k processors outperformed the equivalent Cray-YMP code by a f_ctor
o1"7for 204 gboundary elements and achieved a speed of 1.2 G 1:1.OPS. Aa cvetl hi ,/_hcrperformance on C M-2 with more processors

lbr larger problems i:_expect_:d.

Key words: computer pcrlbnnance, massively parallel processors (MPP), conne_:tion machine (CM-2), supercomputcr (Cray-

YMP), boundary elements, aerodynamics

1. in! roductitm

lit reccttt years, the proccs_rs ofcotwentional vector sttp,,:rcotlqmtcrs

seam to be approaclfing the limit m computatio,lal speed inhclc.t in

their teclmology. However, the ne_ lbr even lhstcr computations

continues to grow. As a consequence, paralld computers are being

developed as a possible solution. Massively parallel computers, CM-

2, devclot_d by "l'hiJ_king Machine Corporation are one f.urtily of

paralel computer arcldtcctttres which may large improvements in

computation perforw.'mce ill tile near lhture over today's thstcxt

supercomputer, such as Cray-YMP, It is understotxl tlmt the CM-2

*Currently al Defense lnlbrmafion Systems Agency, Arlington, Virginia
USA

i i i i i

with 64k processors has an aggregate lX:'_ pcrlbnnance oi4 GFLOPS,

wlfich is already l_tcr titan ntulti-piocessor Cray-YMP's aggregate

peak pertbrttmatce ofarotutd 1 GI.:LOP.

Computation.',l fluid dynantics (CFD) is one of the areas which

nccd supcr-lhst computation power. The com_cctioa machine luas Ihe

potcntial to become tha main computational tool for CFD to repace the

conventiotml supercomputers in the near lhture. "lltis paper presents

the pcrlbnniu_ce comparison of the conventio_ml supcrcomputer,

Cray-YMP, mid the new nmssively par',dlel computer, CM-2, lbr a

simple botmdary clement fluid dynamics compulutiotml code, "lhe

present work has tlu'ee prmcipal objectives: (1) conversion ofa shnpl¢

FOR'I'IG'kN 77 code framing on Cray-YMP nuaclLia_e iuto parallel CM-

I:OI(TIIAN code rutming on CM-2 machine, (2) evaluation of ti_e

perlbnmmcc of the codes on Cray-YMP and CM-2; and (3) prelXtm-

..................... !u' !'.' ............... : ....................

P&GE IM..AI'_ NO'T FIi..MEI_

BJ-,-lt)._lrucls, I'ol A, No. 5, 1992 185



tion for further code conversion _md perlbmlaace ev'.duatiou of

rumples three-dimensional boundary clement lluid dplamics compu-
tatioaal code.

Iu rite next section tile basic aspects of the CM-2 macltine aud CM-

FORTIOkN are briefly re viewed, wlfi ch is tulle wed by the de_riptioa

of the physical problem uHder tiffs mvestigatio, in Section 3. the code

conversion aud perlbmmnce evahmtion are presented i. Sections 4

and 5, repcctivcly. Fimlly iu Section 6, tile concluding remarks are
drayman.

2. CM-2 and CM-FORTRAN

The cotmcction maclfine CM-2 system is an integrated combilmtion of

hardware m_d sotlware designed tbr high,.'peed, large problem parallel

computation. The hardware elements of the system include lJront-cnd

computers, a SIMD (single instruction multiple &da) parallel process-

ing umt to execute the data txarallcl operations, and u high perfornumcc

data parallel operations, aud a high pcrlbnututce data parallel I/O

system. The SIM.D parallel processing tutit is the heart of CM-2

system, which coatams up to 65536 single-bit physical processors

(64 k) in blocks of 8k (k = 1024). The CM-2 used ill tile present work

at NASA-Ames Research Cclltrc has 32k processors with each

ploccssor operatialg at a clock speed of 6.7 MI _. The aggjegatc peak

perlbnn_mce lbr this 32k CM-2 is about 2 GFLOI_S.

The 32k siJlgle-bit processors on this 32k-CM2 arc gloupcd iu

1024 nodes of 32 processors each. Each node also has 6q-bit Wcitck

lloating i_fi nt co-processors, 4 MB of local memory, a.d hardware ibr

mtcrprocessor commtmication. Parallel data structures are spread

across tile d;.|ta l)rtx.'c.,.;_)is, with a single clclnctlt stored in each

processors's uletlu)l)'. If fl_¢ IIttllll_f o1" the txuallcl data clcmcuts

exceeds the total nulllber of physical processors, flit2 cotu_ccliotl

machine creates vblt_d pzocessol s by dividing the mem_ry of each

physical processor. The ratio ul'vu tual to physical t)1occssol s is km_,.,,'.

as the Vl)-ratio, R y hi gclLclal, l]oating-poi.t ix:r1orlu_lcc (usttally ia
terms of MH.OPS or GI:LOI_S) is maxinntm _,qtcn l(vp is ;_s large as

possible, smcc tile Ct)lllllltll|icatit)ll _._vclhcad is reduced as Rvl_

illclcascs. "lh¢ detailed dusclil_lion ;.dlotfl CM-2 Ct:,lltlltllCl is doctl-

mentcd in .amy places, such as Refcleuccs 1 alld 2,

].he CM-FORTIOkN lagtuige is all implemeatation of FOI(TILAN

77 supplcmcllted with array-processing cxtentio,ls from the ANSI

&all al_d ISO staJldaJd FORTILa.N 90. "l'he_ array-processi.g fea-

tures map naturally onto the ¢.kata p:trallel architecture of the CM-2

system, siHcc CM-FOI_.TIOkN allows array elemcuts to be cvahv.tted

siauultaticously. Rcl;.:rcJlce 3 explains thc.'-;¢cxte.sioas, _dfile RolL:r-

e.re 4 gi yes a thll descriptiou ol'C M-FOIO'ILAN. The most imlx)rlaat
diffcrellce between CM-FOR'I10_.N and FORTIG'kN 77 is the treat-

meat of entire arrays as objects in CM-I'ORTIUkN, thus explicit

i.dexmg ht CM-FOR'IqLa, N is llot always necessary. For cxtunple, it

is not necessary to ,_xite Do-Loops or other such control constructs to

have the el)era tion repeated lbr c:tch element of arrays. Therclbre, this

feature ulaps the problem directly to the CM-2 with nfiniuutl I)_ogrmu-

mhlg cfl_:ct. The further explanation of CM-FORTIOkN will be given

along with tile code couvcrsioa examt)le ill Scctiou 4.

3. Fluid Dyn;mfics - BEM

The physical problems co_sidercd hcrc are potential flows arotmd _my

arbitrary complex co_d]guratio_s Oct us call it 'body'), hTcludulg

incompressible aud compressible flows ',_iti1 and ',,Afl_out scparat ions.

The govenfi.g equatiou to this tylx_ of problem cm_ be written iu the

lbnn o1"Poisson's eqttation giveu by

V'4, = G (1)

where G represents full linear or non-linear comprcssibilty aad is a

ftmction of ,I_ hi general. This bpe of problem can be solved by

bout_dary element methods (also c',.dled panel methods, iutegral

cquatiou methods). The boundary element method is based on Green's

theorem, which represents the solutio_ in ternts of integrals over body

surlhces, setxarated surlhccs and volume arouad tile Lvody. The surlhccs

and volume are thea divided late a large ntanbcr of elements, where

integrals are evaluated.

The boun&try element solution in temxs of velocity field (17 =

V,.1,) is givca by _._

7(_:, ,s,-') = fL
LG NG .

I_I... LG NG .

+ ,t_r z__z.._ j d _
i=_=_ ,,, (2)

1 _,s t.SNSff_ d _

',vhere q at_d 37 ate the _tulhce suture m_d rusticity distribution

rcst_ctivcly, which a_c u_k_o,,_als to t_ detcnai_ed by applyi,g

botmdary coaditions; the subscripts g aJtd w refer to the body and

separated stu-l._ces, respectively, ,,_here MS is the total number of

SClxtratioas; d.s. is the inlhfitcsi_d sttrfacc arc.a; 01e vector d_is given

b2'd_= (z - ()?+(y - _/)_-t-(z - ()_-;and _qt is defined by g'a =

,tl/I.
It should be noted thai cqu (2) involves ewduating a large utanber

of integrals (i. lhct they zuc vectors also!) over I_._dy stu-lhcc (total oi"

2 x LG x NG ), .SClXUatcd stulhc¢ (total of MS x LS x NSJ_uld

volt ant (total of L V x M V x N V). The total number el"elements

czul bc very liLrgc lbr ael od)al_unic i_roblcms, iutd t lbr aixcrall conligu-

i ilhOlly; it Call J)C, ltJl cximq_lc i_ Ihc o_dcr o1 II,t(/AII impt_ taint l_ahuc

el'trill (2) is tilat the calculat it:,ll l;or cad| (x,y,z) alld each ((, t/, q') call

simultaneously lbr all (x,y,z) and (,_, _1,() '.viti, a sh_gle i_tstructio_L

Tlfis lkattue of bottndary clement calculation leads itselfh_ a natural

way lbr processing data i_, a SIMD t_trallcl computillg cuviromnent.

For simplicity hi the present work, an h_comprcssiblc flow (G=-0)

past a two-dhncnsional symmetric configtuatioa at zero iJlcidence is

considered AI this simple flow co_tditio_l, Ctl_ (2) reduces to a much
simpler Ibnn,

_v[ , (_ - ,,)7"+(,_- ,_))"
- _--_ s_ ,_,(¢,,v(__;l:,+(v ,_)_,d.(,f,,_) (3)

i=l ,

13y applyiag btxly surface zero-auroral-velocity condition at each

(x,y) = (xy_) furj=l to N, here N._ LG, a NxN system el'equations
is obtained as

[A][,_]= [.U] (4}

where IAJ isNxNhltluence coeflicieut matrix; [qJ is _mN x 1u,tl,aio_,41

vector matrix conlahling rl_ford= 1to N; and [BJ is an N x I kJiow_l vector
matrix which is contributed from 17_ iu this shuple tx_'o-dimellsional
llow ca._.

"lqie _lution procedure Ibr the above lwo-dhnensional Inoblem

u._;it_gbotmdary element method involves four steps: ( 1) generaliou of

body geometry i_dbmtalio.; (2) evalualJou ou iutcgrals ol'cq_l (3) for

i= 1 to N and tbr (xj,,) = (x,,y) with j= 1to N to construct [.'ll matrix; (3)
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numerical solutioa of resulting lhiear system given by _l n (4); mid (4)

post-processing, aerodymmxic calculations. The solution proc'o.lure

for the geueral three-dimensional flows govem_ by eqn (2) is

basically the same as these tour steps, except that the solutions are

usually obtahled tlu'ough an itcmlive proctxlure. The most imlxmzmt

diffizrcnce between the present simple flow gow:med by eqn (2) mid

gener_ complex flows governed by eqn (3) is ttrat, [.4 ] and [B] matrix

calculations are much more expensive in general three-dimensional

computations. "Ihe experiences have sho_q that the [A] and [B] matrix

c',.dculations for gener',d three-dimensional complex flow computa-

tiorts usually take above 80% of total computational time>' The

detailed disc ussion about general three-dimensional complex flows by

boundary clement methods can be Ibund in Refcret_ces 5 and 6,

4. CM-FORTRAN implcmentatio,

Serial FORTIG'kN codes of two-dhnelisional source panel (botmdary

element) methods described by equs (3) and (4) are available in some

refereaccs, such as Reference 7. The scrim FOI_.TIL,XN code in

Retkrcnce 7 dins provides the basis lbr the CM-2 code prcsem here.

This serial FORTIOkN code has first modified tbr efficient executing

on NASA-Ltmglcy Rc._utch Cemcr's CM-2 computer. 'lhc listing of

tile CM-FOR'IqL, kN ct.xlc is preseBtcd in the Appendix, where several

CM-Tinfing routines have been used to get pcrlbnmmce rcsulL,;.

Although the boundary element solution procedure collsists of tour

steps discussed earlier, Step 2 lbr evaluating integrals mid Step 3 lbr

solving linear tile system t;tke most part of the compuumol_d time.

Extx2rience has sho_ll that the_ two steps ustrally take more thm195'/,,

of total computatiotml time when the problem has a reasonable size.

Therclbre. die present interest eli the |x:rlhnn+nlce almlysis is first

lbcused on Step 2 cotnputatiolls mid then Step 3 comptitatioas,

although the code is tully converted into CM--FORTIG'kN.

SUBROUTINE MATELM

PA2dkMETER(N=32,M=33)

DIMENSION X(M),¥(M),XC(N},YC(N) :DS(N),FN(N,n)

I,FT(N,N) ,rotS(N),SDE(N),CI(N) ,St(N)
COMMON X,Y, XC, ¥C,DS, FN. FT, I_ISA PI,CPI,CI, SI

I,UINF,VINF,SDE

DO 2 K-I,N

DO i J-I,N

IF (K .EQ. J) FN(K,J)=2.0*PI

IF (K. EQ. J) }_(K,J)=0.0

IF (K. EQ. J) GOTO 1

DYJ-SI(J)*DS(J)

DXJ_CI(J)*DS(J)

SPN=DS(J)*O.5

XD'XC(K)-XC(J)

Yu=xe(x}-Yc(J)
RKJ-SQRT(XD*XD*YD*¥D)

BKJ-ATAN2(¥D,XD)
ALJ_ATAd_2(DYJ,DXJ}

GKJ-ALJ-BKJ

ZIK-RKJ*COS(GKJ)

L_K--R/<J'SIN(CKJ)

RIS-((ZIK+SPH)"*2)+ETK*ETK

R2S=((ZIK-SPN)**2)eETK-ETK

QT=ALOG(RISIR2S)

DEN-ZIK*ZIK*ETK,ETK-SPH*SFH

CNM-ETK*DS(J)

QN-2.O*ATAN2(GNM,DEN)

UKJ-QT*CI(J)-QN*SI(J}

VKJ-QT*SI(J)*QN*CI(J)

FN(K,J]--UKJ"SI(K)eVKJ*CI(K)

FT(K,J)_UKJ*CI(K)*VKJ'SI(K)

CONTINUE

B/_S(K)-UXHF*SI(K)-VINF*CI(K)
CONTINUE

RDI'UKN

END

Fig. l(a) FORTILM'q 77 subroutine lbr calctdating matrices

Figure l(a) is the list of the scrim Cray versiolt FORTIG".,N subroutine

tbr cvaluatittg ildlucacc coedicicat matrix, [eli, and the matrix lal It

is noted that this subroutinc is nothiug but a two-lcvcl

Do-Loop, which provides tor evahtating each clement of [A ] and [/31.

When the code is in execution on Cray-YMP, the vectorization of the

ilmer Do-Loop is automatically done tlu-ough the vectori_;ation capa-

bility of the FORTRAN 77 compiler.

SUBROUTINE MATELM

PAR2d4ETER(N_32,M=33)

DIMENSION X(MI,¥(M),XC(NI,YC(N),DS(N),FN(N,N)

I,FT(N,N),RHS(N),SDE(N),CI(N),SI(N)

2,DYJ(N,N),DXJ(NaN),SPH(N,N),XD(N,N),YD(N,N)

3,RKJ(N,N),BKJ(N,N),ALJ(N,N),GKJ(N,N},ZIK(N,N)

4,ETK(N,N),RIS(N,N),R2S(N,N),QT(N,N)aDEN(N,N)

5,GNM(N,N),QN(N,N),UKJ(N,N),VKJ(N,N)

6,DS2(N,N),CI2(N,N),SI2(N,N)

7,xc2 (N,N),¥C2 (N,N), XC3 (N,N),YC_ (N,N)
8,SI3(N,B),CI3(N,N)

LOGICAL MAIN DIAG(N,N)

COMMON X,Y,XC, YC,DS,FN,FT,_IS,PI,CPI,CI,SI

%,UINF,VINF,SDE

XC2 = SFREAD(XC,DIM=I,NCOPIES=N)

YC2 = SPREAD(YC, DIM=I,NCOPIES=N)

XC3 - SPREAD(XC,DIM-2,NCOPIES_N)

YC3 _ SPREAD(¥C,DIM_2,NCOPIES_N)

SI2=SPREAD(SI,DIM_I,NCOPIE_N)

CI2-SPREAD(CI,DIM_I,NCOPIES_N)

SI3=SPRF_.AD(SI,DIM-2,NCOPIES_N)

CI3_SPKEAD (el, DIM_2, NCOPIES_N)

DS2 _SPRE3%D (DS, DIM_I, NCOPIES=B )

MAIN DIAG-DIAGONAL (SPReaD (. TRUE., 1, N) , . FALSE. )

W}IERE(MAIN DIAG)
FN-2.0tPI

FT - 0.0

ELSEWHERE

DYJ _ SI2 * DS2

DXJ m el2 * DS2

SPR " DS2 * 0.5

XD _ XC3 - XC2

YD _ YC3 - ¥C2

RKJ_SQRT(XD_XD *¥D*YD)

BKJ_ATAN2(YD, XD)

ALJ=ATAN2(DYJ,DXJ)
GKJ_ALJ-DKJ

ZIK_Id<J*COS(CKJ)

ETK_-RKJ*SIN(GKJ)

RIS_((ZIK*SPH)**2) + ETK*ETK

R2S=((ZIK-SPH)*'2) + ETK*ETK

QT-ALOG(RIS/R2S)
DEN_ZIK*ZIK * ETK*ETK - SPH*SPH

GNM_ETK_DS2

QN=2.0*ATA_{2(GNM,DEN)

UKJ_QT*CI2-QN*SI2

VKJ_QT*S_2+QN*CI2

FN_-UKJ*SI)*VKJ*CI3
FT-UKJ"CI3_VKJ_51]

ENDWHERE

_IS=UINF*SI-VINF* CI

R_URN

END

Fig. 1(b) CM-I:OI_.TIkAJq subrouti,_c lbr calculating matrices

Figme I (b) is the list of the lmrallcl CMq:ORTI_AN subrouth_c lbr

evaluating cocll_cient matrix, [.-t], and the matrix [t3], A fi:w tkings

should be mentiol_ed. First, since no Do-Loop has been sccn here since

in CM-FORTIL, XN entire arrays are treated as objects and array

dements are evaluated simultm_,:ously. Sccoud, the conditioual ll'-

Statement is rt.'prescnted m tim form of WIIER.E-F.LSEWIIERE-

ENDWI- _IERE fomvat which allows the conditiotml processing to be

dottels parallel;Third, theCM-FORTILthN intrinsic ftmction SPPdTAD

is used here to create two-dime_tsiomd arrays fern, one-dimcmsiotud

arrays by duplieatlttg the clemcuts in either row- or cello nn-dirt.x:tions

as desired lbr easy hnplementation ol'tx_mllcl processing of statements

like,Xl(K,J) =X2(h3+A3(J), Fourth, temporary scale vuriahles, such

as DYJ, DXJ m_d so on m serial FORTILA.N become two-dimctt_io_lal

arrays in CM-FORTRAN in order to implement parallel processing.

However, such arrays increase the total memory requirement of CM-

code signilicalfly us compared wifll the scrim FORTIL, kN code. For

example, _ithi, the present investigation it has b_n tbuad that hie

CM--FO1EI'ILA.N code with 4096 botmdary elements exceeded the

2GB memory limit of the CM-2 computer _Jth 16k processors.

"ll_e dc_Lse linear system of cqn (4) is solved by the Gauss

eliniitmtiou methtxl in Cmy serial FOR'I'ILMq vcrsioa. To compare

ORf_NA& PAGE m
or
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Table I.The detailed computational pcrfornlancc results

'I'a_ k/Siz e ( N ) 8 K- C lvl2

"l'azk N Time(s) MFLOPS

Mat Coef 32 .0.0173 12.3

Lin Syst 32 0.125 0.210

Tut:,i 32 0.156 1.64

Ma, t Cocf G,t 0,0194 44.5

Lin Sy_t 6,t 0.261 0.741

"ibt al 64 0.294 3.78

Mat Cocf 128 0.0310 112

Lhl Syst 128 0.717 2.03

TotM 128 0.76.t 6.61

Max Cocf 256 0.06150 205

Lixt Syst 256 3.08 3.77

Total '>¢'.o6 3.17 8.2.1

M,xt Coef 512 0.205 273

Lin Syst 512 18.7 ,t.157

"l'ot a..l 512 19.0 7.89

Mat Cocf 102.t 0.731 308

Liu Syst 102,t 139 5.20

Total 1024 1,t0 6.80

Ma.t CocI 20-t_ 2.84 316

Lin Sy_t 20.15 1036 5.60

"l'utal 2048 1039 6,-lg

IGK-CM2

Time(s) MFLOPS
0.0173 12.3

0.123 0.210

0.15,1 1.66

0.019.t 44.5

0.252 0,767

0.286 3.85

0.0224 155

0.590 2.46

0.627 8.05

0.0,i,17 312

2.0u 5.51

2.07 12.6

0.115 487

10.4 8.76

10.5 14.3

0.383 557

71.3 10.3

71.7 13.4

1 .-13 627

5,16 10.5

5.115 L23

32K-CM2

Time(s) MFLOPS

0.0173 12.3

0.123 0.210

0.15,t 1.66

0.0186 46..1

0.250 0.77,t

0.282 3.90

0.0203 171

0.534 '2.72

0.569 8._9

0,0323 .132

1..t5 15.0"1

1.50 17.,1

0.0685 818

6.1;5 1.1.7

5.30 23.8

0.206 109'2

37.7 IU.,I

38,0 25.2

0.737 1216

277 21

2715 i 2.1

Ctay-YMP

q'ime(_) MFLOPS

0.00152 1,t0

0.00152 17

0.00851 30

0.00523 165

0,001579 22

0.0250 ,I,t

0.0202 172

0.0581 25

0.101 50

0.0703 17_
0.,115 28

0.5,1,l ,t

0.313 179

3.1,t 29

3.57 .t2

1.25 1_0

2,t..1 30

25.0 37

•1.98 180

.| 19 " 3u

V lug 3.I

computational pcrlbmmnce, this linear system is solved by calling a

modified Gauss-Jordan lUllctioll routine from CM Scientific Sollware

Library (CMSSL) when lmuung m CM-2 computer. CMSSI, is

created lbr data parallel mchitccturcs tuLd is designed to hmldl¢

concurrent applicatious. Although the Gauss-Jordan method r_.Ntmcs

about 50% more operations cotnpared to the Gauss climhmtion

method, the Gauss-Jordm_ method is more appropriate tbr data parallel

computation. Another reason to use Gauss-Jordan raffler the the Gauss

elimitmtion method is simply flint only the GaussJordan method is

available l?oln CIvkSSL.

5. PcJTormancc awalysis

The serial code with different numbers of boandary elements (N) is

lirst executed on the Cray-YMP supercomputer u.smg single processor

to provide the basis lbr perfofnunlce comparison. "llle C ray-YMP used

here ltus 5 processors (CI'US) with 128 MW SRAM central memory.

Each CPU is a register-to-register vector processor v,_th peak perlbnn-

ante at 150-300mflops. "ll,e computatiotml perfomumce in tcnas of

mllops is obtamtxl using Cray-YMP's PERF]IL, kCE utility. "ll_e

parallel CM-FORTRAN code _ifl* different nmnbcrs of boundary

elements is then executt.xl on CM-2 with 8k, 16k .',nd 32k processors

under a slicewise model.

Table 1 gives detailed per!bmmnce results for Cray-YMP and CM-

2 computers _,ith a w_,ing size of problem. The perlbnrmnce of CM-

2 in terms of nfflops is file equivalent Cmy-YMP perlbmmnce. In

Table 1, 'Mat Coef' relbrs to the subroutine tbr evaluating numices;

'Lin Syst' refers to the routine lbr solvhfflinear system; and 'Total

rcfers to the total computatioa for entire code. The sets of results lbrm

Table 1 have been extracted to be presented in Figs 2-5. Each figure

is discusscxl below.
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Fig. 2 Performance comparison ibr calculathlg matrices

Figure 2 shows execution thne lbr evaluating the inllucnce coet/i-

cient matrix, [A], and the matrix IB] obtained on Cray-YMP and CM-

2 computers tbr diff_ent ntunbcrs of botmdary elements. The CM-2

performance at each,mmb_.a" of boundary de,neuts, as sho_ll in Table

1, is represtmted by solid poh_ts v, hich a_e co,mectea.l by dashed lines

sh_ce these lines do not lepresent the actual variation ofexecudon t hne

between each point. It can be seen that the cpu execution time

dcereas,._ with Ihe increase of the number of CM-2 processors ',dler tl_e

s_e of tl_e problem is large enough to fully use all processors. For

example when N=2048, the cpu time of 2.84 s_xonds wilh 8k

processors is reduced to 1.43 seconds with 16k processors, and then

is lh_ther reduced to 0.737 seconds with 32k processors. That is to say

ttmt whcuever the wavenumber of processors used is doubled, the

CPU time is reduced by a fi_ctor of 2. It is also setm that when the

problem size is ht|ge enough lot the CP[J ti,ne required on CM-3, even

with 8k processors, is significantly (note fltat l.ogt,-axis is us.ed lor
i i
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execution tm_c!) less titan that r_tuired on CM-2 with 32k processors

is about I/7 odfttuat required on Cray-YMP. Tiffs is a very encouraging
result.

looo

1oo

ffl

g 1

0.!

n

(3

0.01

0.001

- tC4ay.YMP ,'" I

--_- 32K-CM2 at ,j,',,.a

-- • - 16K-CM2 ," ,',/

- _'- 8K-CM2 ,'_,'_/

,d,';'"
/'j /

//'j"

0.0001 , _ L , = ,

32 64 128 256 512 1024 2048
Number olpanels, N

Fig. 3 Pcrtbm_nce com_tfison lbr solving linear system

Figure 3 "shoes the CPU lime lbr a linear _yslcm solver. It should

be n_cntioned tl_at again bolbre comparing l>ertbnnancc, the Gauss-

Jordan solw.'r requires about 50% more operatiorts compared to Llle

Gauss elimitvation solver. "tile comparison shows that the cpu time

required on CM-2 with 32k processors approaches that required on

Cray-YMP with d_e Ulcrcase of the problem size. For example, the

CPU tune required on CM-2 with 32k processors is O. 125 secoads lbr

N=32 which is much larger than that lbr Cmy-YMP of 0.00152

sccotld..,;_.'while tiffs comparison becomes 277 seconds to t 92 seconds

when N=2048. "l]aedbre it can be expect_ thet when tile problem size

b_omes large enough the CM-2 with 32k processors will outpcrlbnn

Cray-YMP tbr solving linear systems. By comparing the CPU time on

CM-2 with 8k, 16k and 32k processors it is believed that if64k

processors are used, CM-2 will outper/bnn Cray-YMP even at a not

very large N-value, for ex_unple at N=512.

IOO0

Oiy-YMP

- • - 32_*C,M2 , .',>_

100 - • - 1,_K-t.._2 ," ,','"

O3
_10
a_ . -. "j,

"5

0.1

0.01

0.001

0.0001 _ =

32 64 128 256 512

Number o| panels. N

1024 2048

Fig. 4 Performance compahson lbr entue code computation

I I II L I I I lii

Figure 4 shows the total cpu thne. It is lbtmd livat the situation in

this figure is shnilar to duat of Fig.3., since m the present physical

problem, the solution of the linear system takes most of the compu-

tatior_al time when N is large. But it is not true for general three-

dimen.siotml complex flows v,here separation occurs and compressibilty

is impommt, as governed by eqn (2). In such complex flow situations,

the expericaxce has shown that the evaluation of coefficient matrix, [A],

and the matrix [B] usually take above 80% of the total computational

time, s._ as mentiom,'d earlier.

loool -o- oay.YMP
- lid - 321_-CM2

¢1 ,"

o t---0----,,"
/

_100 ,,

,"
r,_

10'

.t - - ° "-B

f

32 64 128 256 512 1024 2048

.Number of panels, N

Fig. 5 Computational sl_eds lbr calculating nuttrices in terms of
MI,'LOPS

Figure 5 is a reproduction of Fig. 2 for perfonnance results on Cray-

YMP and CM-2 with 32k processors, and is reprcscuted in tenns of

mflops. From this figure it is clearly seen that the CM-2 perlbnned at

above 1.2 GFLOPS when N=2048. Tiffs speed is about to reach the

maclfine' s aggregate peak speed of about 2 gflops. The speed acheived

here is one of the highest speeds achieved on CM-2 with 32k

processors for fluid dynamics problems done by some investigators, s"
12

6. Cotlcluding remarks

A simple source lxmel (boun&lry element) code Ires boen sucessfully

implemented on the massively lxtrallel Cotmection Maclfine CM-2

using CM-I.'ORTILAN Imlguage. "lhc detailed perlbmlance results are

obtained and alta/ysed. Some concluding remarks c_ulbe dra_ from

lift s investigation. First, file conversion ofscri',d lbrtran code to par',41cl

CM-FORTILAN code is straightfonvard with little difficulty. Second,

CM-FOI_.TIL,M'q code acheived a very tfigh perlbrmance and for most

of the cases tested here it outperformed or near perlbnned the Cray-

YMP supercomputer. The ifighest slxx:d achieved in this investigation

is above 1.2 GFLOPS which is very encouraging. Third, the botmdary

element method is more appropriate for data parallel processing

compared to finite-difference or fi_fite-volume methods. Fourth, fur-

ther computational performance inverstigation can be twade on real

life general thrco-dimensionM complex llow problems using bound-

ary element methods where an even high-n" _'rfonnance should be

exlx.'cted on CM-2.
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Appendix

ll_c lbllol_ing i_ the list of CM-FORTILAN code lbr two-dimcnsiolml

boundary clement (panel) metho.l.

PROGRAM DEM2D CM

PAF_ETER (N-3- _, M_:32 )

C ................................ - ..................

C

C

C
C

C

C

C

C

C

l_llM CALCULATES VELOCITY AND PRESSURES A_OHT

A/_IT|_kRY 2D BODY
PA_A_I 5_]_( DESCRIPTION

hA MATRIX [A]
S MINOR SEMI-AXIS LENGTH OF THE ELLIPSE

FblN FREESTRIL_d_ HACII NUMBER Minf

FN INDDCED VELOCITY NOI_4AL TO PANEL. K

DUE TO UNIT SOURCE

FT INDUCED VELOCITY TA_|GENTIAL TO PANEL k

C

C M

C N

C RHS

C SDE

C U,VINF

C X,Y

C XC, YC

C QE

C

DUE TO UNIT SOURCE

NUMBER OF ELEM£tIT _D POINTS

NUMBER OF ELEMENTS

VECTOR MATRIX [B]

SOURCE DENSITY VECTOR, [Q]
FREESTREAM VELOCITY COMPONENTS

COORDINATES OF PANEL END POINTS

COORDINATES OF PA/4EL CONTROL POINTS

EXACT TANGENTIAL VELOCITY AT

THE SUI(FACE OF ELLIPSE

C ........... - .......................................

INCLUDE '/usr/include/cm/CMF_defs. h'

INCLUDE '/usr/include/cm/cmss l-cmf, h '
C ............. - .....................................

DIMENSION X(M),Y(M),XC(N),YC(N),DS(N),FN(N,N)

_,_(N,N) ,ram(N),SDEtN) ,cI(N),sI(14),A_(N,N)
COMMON X,¥,XC,YC, DS,FN,FT,RMS,PI,CPI,CI,SI

I, UINF,VINF, SDE

DIMENSION BG(N,I),IPIVOT(N),WK(N)

CALL CM TIMER CLEAR(8)

CALL CM TIMER START(8)
UINF = I, O

VINF = 0.0

FMI,I = 0.00

B = 1.00

NMAX - N

NI_tS - 1

IFAC - 0

PI _ 3.141592G5

CPI = 2.0/PI

WRITE(6,2)N, B

WRITE (6,3 ) UINF, VINF, f'MM

2 FOR24AT(IX, 'PANEL MET_IOD WITH ', 15, 'ELEMENTS', 5X,

1'ELLIPSE MINOR SEMI-AXIS = ',F6.3,/)

FOR/4AT(IX, 'ONSET VELOCI'PY COMPONENTS = ' ,2F6._,

i 2x,' FREE._TEAM HACil N UMnER - ',I"6.2,/1)

C .....................................

C CALCULATE COORDINATES OF BODY AND

C CONTROL POINTS - S_ep 1
C .....................................

CALL CM TIMERCLEA/< (O)

CALL CM TIMER STA/_T (0)

CALL BODY (FMN, B)

CALL CM TIMER_STOP (0)

CALL CM TIMER lq(iI_T (0)
C ..........................................

C CONSTRUCT TIlE H.ATI¢IX EQUATION - 5_cp 2
C ..........................................

CALL CM_TIMER_CLE/LR (I )

CALL CM .TIM_IIi DTAJIT (i)

CALL MATE LM

CALL CM TiMeR STOP ( 1 )

CALL CM_TIMER PRIlgr(1)

CALL CM TIMER CLEA/I(9)

CALL CM TI MI'.'R S'l'/d{T (9 )
hA - FN

SDE _ I_IIS

CALL CM TIMeR_STOP(9)

CALL CM T IHE|{ PRINT(9)
C .................................

C SOLVE LINEAR SYSTEM - Step 3

C FUNCTION ROUTINE GEN_GJ_SOLVE
C IS CALLED FROM CMSSL

C .................................

CALL CM TIMER CLEAR(10)

CA/_ CM_TIMER STA-RT (10)

BG(I:N,I) - P/_S(I:N)

CALL CM TIMER STOP(tO)

CALL CM TIMER PRINT (10)

CALL CM TIMER CLEAR(_)
CALL CM TIMER START (2)

PRINT *, 'PIV_..MIN=',

+GEM GJ SOLVE(XA,_G,N,NRHS,

+CMSSL partial pivo_ing,IER)

CALL CM TIMER STOP(2)

CALL CM TIMER PRINT (2)

CALL CM...TI_tr:R CLZAR(zl)
CALL CM TIMER START(II)
SDE(I:N[ =' BG'('l:N,11

CALL CM_TIMER STOP ( 11 )

CALL CM TIMER PRINT(f1)
C ...................................

C CALCULATE VELOCITY AND PRESSURE

C AT TIlE BODY SURFACE - SUep 4

C ...... - ..... - ......................

CAJ_L CM TIMEII CLEAR ( 3 )

CALL CM._TIMER START ( 3 )

CALL SURVL(B, FMN)

CALL CM_TIMER_STOP (3)
CALL CM TIm:R PRINT(3)
CALL CM_--TZMEa_s'roP(_)
CALL CM_TIMER PRINT (8)
STOP

END



SUBROUTINE _ODY (FMN, B)

PA/q.A.M E'PER (N_321M _33 )

C .................................................

C CA.LCHI_TES BODY Added CONTROL POINT COORDINATES

C FOR AND ELLIPSE WITH MINOR SEMI-AXIS, B

C .................................................

DIMENSION X(M),Y(M),XC(N),YC(N),DS(N),FN(N,N)

I,_f(N,N),RHS(N),SDE(N),CI(N),SI(N)

2, SX (N) 1SY (N) ,T}| (M) ,AT (M)

COMMON X, YA XC, YC, DS, ZN, FT, I_/IS, PI, CPI, CI, SI

1, UINF, VIii.', SDE

NHLFF - N/2 "_" 1

NHH - NHLFF "_- i

AN = NHLFF - i

DTH - PI/AN

FORA.LL (I-I :NMLFF) AI (I) =I-I

TH(I:NHLFF) - PI - AI(I:NIILFF) * DTH

X(I:NHLFF) - COS(TH(I:i']HLFF))

Y(I:NMLFF) - B * SIN(TH(I:NHLFF) )

X(I{H/_:M) - X(NHLFF-I: I:-i)

Y(NHH:M) --Y(NHLFF-I:I:-I)

XC-(X(I :N) +X (2 :N+I) ) *0.5

¥C_ (¥ (i :N) +Y (2 : N _-I) ) *0.b

SX_X (2 :N+I)-X(I:N)

S¥-Y (2 :N+I)-Y(I:N)

DS_SQRT (SX_'SX+SY 4Sy )

CI-(X(2 :N+I)-X(I:N) )/DS(I:N)

SI-(Y(2 :N.l) -Y (l:N))/DS (l:N)

RETUIhN

El,[ D

SUBROUTINE MATELM

PARA.MET ER (N_ 32, M_33 )

C .......................................

C CA_LCULATES MATRIX ELEMENTS ;_D IdIS.

C .......................................

DIMENSION X(M),Y(M),XC(N),YC(N),DS(N),FN(N,N)

l,_-_(N,_),R,IS(N),SDE(N), Cl (N),SI (H)
2, DYJ (N,N), DXJ(N, N), SPH(N, N), XD(N,N), YD(N,N)

3,RKJ(N,N),BKJ(N,N),ALJ(N,N),GKJ(N,N),ZIK(N,N)

4, ETK (N, N) ,RIS (N, N) ,R2S (N,N) _ QT(N,N),DEN (N,N)

5,GNM (N,N) ,QN (N,N) ,UKJ (N,N) ,VKJ(H,N)

6, DS2 (N, N), Of 2 (N, N), SI2 (N, N)

7, XC2 (N,N) ,¥C2 (N, N) , XC3 (N,N), YC3 (N, N)

8, SI3 (N, N) ,CI3 (N, N)

LOGICAL M.AIN DIAG (N, N)

COMMON X, Y, XC, YC, DS, FN, FT, Id[S, PI, CPI, CI, SI

1, UINF, VINF, SDE

XC2 - SPREAD(XC,DIM_I,NCOPIES-N)

¥C2 _ SPREAD (YC, DIM=I, NCOPIES=N)

XC3 - SPREAD(XC,DIM=2,NCOFIEL-N)

¥C3 _ SPREAD(YC,DIM=2,NCOPIES=N)

SI 2 _SPREAD (SI, DIM-I, t_COPI ES-N)

CI 2-SPREAD (CI, DIM_I, NCOPIEZ-N)

SI 3_SPI(EAD (ZI, DIM-2, NCOPI ES-N )

CI 3=SPREAD (CI, DIM=2, NCOFIES=N)

DS2 =SPREAD (DS, DIM=I, NCOPIES-N)

MAIN_DIAG=DIAGONAL(SPREAD( .TRUE. , i, N) , .FALSE.)

WHERE (MAIN_D IAG )

FN -- 2.0 * PI

FT - 0.0

ELSEWHERE

DYJ - SI2 * DS2

DXJ " CI2 * DS2

SPH - DS2 * 0.5

XD - XC3 - X_2

YD " YC3 - ¥C2

R.KJ_SQRT (XD _'XD "_YD*YD)

BKJ-ATAN2 (YD, XD)

ALJ_ATA/'{2 (DYJ, DXJ)

CKJ_ALJ-BKJ

Z IK_P.KJ*COS (GKJ)

E'I_K--R.KJ* S I N (GKJ)

RIS-((ZIK+SPH) 442) + ETK*ETK

R2S_((ZIK-SPH)442) + ETK*ETK

QT_A/_OG (RIS/R2S)

DEN-ZIK_,ZIK + ETK*ETK - SPH*SPH

GNM=ETK4DS2

QN_2.0 *ATA/42 (ONM, DEN)

UKJ_QT 4 Cl 2 -QN* S 12

VKJ-QT*SI2+QN*CI2

FN_-UKJ 4 SI 3+VKJ,,CI 3

FT-UKJ*CI 3 eVKJ,_ SI 3

ENDWHERE

P,.HS-UIN F 4 S I-V I N F* CI

RETURN

END

SUBROUTINE SURVL(B, FMN)

PARAMETER (N- 3 2, M_ 3 3 )

C ..................................................

C CALCULATES VELOCITIES AND PRESSURE AT CONTROL

C POINTS

C .................................................

DIMENSION X(M) ,Y(M) ,XC(N) ,YC(N) ,DS(N) ,FN(N,N)

i, PT(N, N) ,mIS (N), SDE (N) ,CI (N) ,SI (N)

2, QTS (N) ,QNS (N) , QNK(N) ,QTK (N) ,UU(N) ,W(N)

3, SDE2 (N, N), FTSDE2 (N, N) , FNSDE2 (N, N), DUM (N)

4, PP(N), QEX (N) , CPN(N)

COMMON X, Y_ XC, YC, DS, FN, FT, R.HS, PI, CPI, CI, SI

i, UINF, VINF, SDE

SDE2=SPREAD ( SDE, DIM=I, N COPIES=N)

FTSDE2=FT * SDE2

FtISDE2=FN 4 SDE2

QTS_SUM (APd_AY=FTSDE2, DIM=2 )

QNS_SUM (A/_Y_FNSDE2, DIM_2 )

QNK-QNS ÷ VINF4Cl -UINF*SI

QTK-QTS * VINF*SI eUINF*CI

UU=UINF - QNS _' SI + QTS *CI

VV=VINF + QNS * CI + QTS *SI

PP=I • -UU*UU-W'kW

CPN_-PP/SQRT (1.0-FM_]* FMN)

DUM=B*B4XC

DUM=YC* YC+DUM* DUM

QEX=(I.0 * B)*YC/SQRT(DUM)

WRITE(6, I) N

WRIT_(6 _ 2) "XC

WRITE(6, 3) N

WRITE(6,2) CPN

I FORMAT(/, 2X, 'XC(1), I=l, ', I5)

2 FOR.MAT (2X, S F10.3)

3 FORMAT(/, 2X, 'CPN(I) ,I=l, ', I5)

RETUR.N

Et4D

]3li'Abslr_lcl.% Vol. 3, hb. 5, 1992 191



No. 9

EXPERIENCE WITH TRANSONIC FLOW IE COMPUTATIONS

Hong Hu
Department of Mathematics

Hampton University
Hampton, Virginia 23668

Published in

Boundary Elements in Fluid Dynamics
April 1992



r
o _,,ml

o_

°_

,-_

o

_o
0 0

°_

t..O

rj_

0

GO

o

°_

D..,

q_

o

0,.,

o
(D

0 "_

• 0

o__oo

!'
r
r
r
r
I'
Iit

_o

_o<_
o_

M<_.

_e_2o

<mMO

_0

z_

o
N

".'_l 0

o

_'_

if,



°_

0

o_

0

.0

U-_

., _., o _._____-_j _ _ _-

_,._ ,_ _ ¢_._

_ I__ ._._ _.,_

o _ _ _ _ H_.o "_ '

•_._._ _'_,,_ _. _

_'__ "_ "_,,._



C} r,_._ x

.- _ _ _ I_...

u.,I -I-

I
"_ _ q "E -+- x

_0

8
fi

g_

e_

_:_

o_

I

I

II

>_.__

II "" _ ° _ _._

_ "_ _ _._ "_"Z: _,.,_, o

"_._ _._fi._ _, _ ' o

._ _.__" _ '_
,_ ._ ?__._ _ .o

• _

li

5. II
II II

• ._

_ '_ 0

a_I_

I _o"

+ ._._

-

_ o',If

_" _ _._0_

o._

N'_

_ ._._

'g ._"s

,_" _ P.,,.O

II _ _ _
0 0

'_- _ _,

•_ _._

_:_ i_._

m
._ o_



_6
"_o
,_._

F

0

_ ._._'

_.-_ _ o
_] t_ II

0 y

.o ,C

.o ._ o -o "_"

_o _
I:1 _a "_ 0 0 0

_ "_ II II o

_ o_ ._c ,

0 ".,._ ,-_i

-_J 8 ""8 I
, _.._. ,_

_31¢,.o"o



b

0
m

"o

Sm

8



i

°

E

,kl..,

6

0

-.d
0

n

o
_, o

_'_ I ' ._

. -.4-X o

• , _ _'

g*6 s

,,< .......-;<_j g
_J

-_ ,";a "s

¢_

i

A_
.i

V

f _.--..--._

U_

6.£

0

0

q::_



E

b
c_

0

iO
I

,0
_" 0 I

.._ ,l_j s s

| I I I I I

.? _. % o % .,:

..=o

%.

o

0

"_0

_2 _,

0 _

o

_2

t _ .1_" -" "Q

i S

s/s M_

d" iO

_= _-o..__ ........

G

g
Ii
0

II

0

@

_Z

_5_ ,_ _ _

_:_ _-_

\,
ii

-o

g
II

c::;
II

s
.<,
o

E
0

=0

C_

g



E

_S
"--3

0

,0

:o
0

".o

,,Q
"o

! I I I I i

0

0"_

"-" _-l-
_o

° 11

c5

o _

0.._ .

d

_'_ _

_ g

._ _ _t 0

6

.r

0

e-

o

_o
",T

.,5

1,4
¢1

" L "_L "

0

0

o

$

0(,.)

I I '='I I I I i I

-"I

,i

-'I

-'t

C-e

0

o

a3

La_,



F.¢i_! _._

,_-_ "_._ _
•_o _ _3

"_ _ _"_
_a_ "<,.__

_ _._

._
,o_

!.

,-4<

• 0

_._
_,.

:_:_
"<_<



No. 10

A 3D IEM FOR COMPRESSIBLE WING FLOWS
WITH AND WITHOUT SHOCKS

Hong Hu
Department of Mathematics

Hampton University
Hampton, Virginia 23668

Published in

Boundary Elements in Fluid Dynamics
April 1992



• i..-q

oe--q

o

0 0

r.s_
_4

0
0_

Q_
o_

o_ ._

...21 ,_ 0

_0

0 _

oo_

zO_o
0_

_M m

_o

z_

0

N

o._

,_'

o _

_

•_ _ o__ __._ _ ._



°_

0 ._
M

0 -_

o _ _
oUa: _.~

.m

0

0

0

Z

0



b

B

+.,
o_

c+.

-,+

0



, i ,,,

Ii

E

4'
"0

'5

u.

£-,

g

_'_ 0

__
"_ 0 0 lao,"_

._._ _ _.;_

_x_
• ..._:_,,._



8
E

O

l/,

]::
,2

o
I:::I '.,,

IM

1.4
H

I.-. v 'Z4 %';-'

-5._ ._2_..

_,,_ 0 0 _

• _ 0

b

en



E

0

.../
en

en

eJ

• _
X s

i

._i_.
Z2

A , i • i I _' • - i , kl

-!

i '_

ms

i , i , A

¥ @ _ "_ _ _ ;4w ¥ N

,.£

E

"5 'i

i . , . , • , . , . J .

/ /



E

"o

t-,

e-

ta4

0

_c_ 4j

o_ o _

._o o_ _o .

_ _'_ -oo .
_6"" ._'_I o _ o

_. _. ._,

_'_ 0¢ Q

0,-._

.0

,

o_ _.

__

_._
o__:_

¢:1 0"_

la ¢1

._ _.

g_

.E

r

/ _ .._t _

_iI." _

i! II

_°

0

0

_J



. ._ c__ ._ _ ._

_ _ _ _v_ _

•- ._._..- _ .._,.

_ _ ___:_..-__ $_
_._ _ o

'="'o6 "'"o

._._ _'_

_o ._-._g

_ __

¢5 ,-.;

o'_

__

_ 0 _

"_,.,_

._

e4



No. 11

APPLICATION OF THE INTEGRAL EQUATION METHOD
TO FLOWS AROUND A WING WITH CIRCULAR-ARC SECTION

Hong Hu
Department of Mathematics

Hampton University
Hampton_ Virginia 23668

Published in

Boundary Elements XIII
August 1991



| i i

_0
r_ ._

o

o
°_

o

o_ ._

o_o_ _

_q
0

o
o _

Z

[-.,

o

o _ ._



°

o
o_

o
°_

o



ILl

0

.o

@

S
,@



0

"_T_

_.R

,.r._. 0"_._

•.-_ id

o_ ._

"_._ _ _ m._ _

o .__ _-_.=

_Pq__P.,l__-_: .[,,1.
,-I_ ,_l_ ,_l_ ,_l_

-t- -I- -I- -I-

o
r-I

.._ '_,

_.x
I_"_ _'x

I I I M

_ S.___
X "I_ _

"_._o_

_'_._

•a. !._ _

_I_ __
"_I_._

0
•= 8 Iii

8 .= "i_

N _._

_.e__

_._



b___ _, . _
[] II

bb

0

3

_G

6q

x

I I I I I

! l I I ! I

I I I I I I I

I I I I I I I I

k'''l'' '\
\"'''' '7

\'''' '11
\''' II

e_

L"
0

N

0

II o_

II

_j

N

0

8

c_



.B

o_
'_

I






